

EDITION v6.0.0 - Updated to ASP.NET Core 6.0

Refer changelog for the book updates and community contributions.

This guide is a general overview for developing and deploying containerized ASP.NET Core

applications with Docker, using the Microsoft platform and tools. The guide includes a high-level

introduction to Azure DevOps, for implementing CI/CD pipelines, as well as Azure Container Registry

(ACR) and Azure Kubernetes Services AKS for deployment.

For low-level, development-related details you can see the .NET Microservices: Architecture for

Containerized .NET Applications guide and it related reference application eShopOnContainers.

Credits

Author:

Cesar de la Torre, Sr. PM, .NET product team, Microsoft Corp.

Acquisitions Editor:

Janine Patrick

Developmental Editor:

Bob Russell, Solutions Professional at Microsoft

Octal Publishing, Inc.

Editorial Production:

Dianne Russell

Octal Publishing, Inc.

Copyeditor:

Bob Russell, Solutions Professional at Microsoft

Participants and reviewers:

Nish Anil, Sr. Program Manager, .NET team, Microsoft

Miguel Veloso, Software Development Engineer at Plain Concepts

Sumit Ghosh, Principal Consultant at Neudesic

Colin Dembovsky, DevOps Practice Lead, Cognizant Microsoft Business Group

Copyright

PUBLISHED BY

Microsoft Developer Division, .NET and Visual Studio product teams

A division of Microsoft Corporation

https://aka.ms/DockerLifecycleEbookChangelog
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://github.com/dotnet-architecture/eShopOnContainers
http://www.octalpub.com/
http://www.octalpub.com/

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2022 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any

form or by any means without the written permission of the publisher.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions, and

information expressed in this book, including URL and other Internet website references, may change

without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association

or connection is intended or should be inferred.

Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are

trademarks of the Microsoft group of companies.

Mac and macOS are trademarks of Apple Inc.

The Docker whale logo is a registered trademark of Docker, Inc. Used by permission.

All other marks and logos are property of their respective owners.

https://www.microsoft.com/

i Contents

Contents
Overview of Containers and Docker .. 1

Learn Docker .. 2

Comparing Docker containers with virtual machines ... 3

A simple analogy ... 4

Learn Docker specific terminologies .. 4

Learn docker containers, images, and registries ... 6

Road to modern applications based on containers ... 8

Introduction to the Docker application life cycle .. 9

Containers as the foundation for DevOps collaboration ... 9

Challenges in the application life cycle when using Docker. .. 10

Introduction to a generic end-to-end Docker application life cycle workflow 11

Benefits of DevOps for containerized applications .. 12

Introduction to the Microsoft platform and tools for containerized apps 13

Designing and developing containerized apps using Docker and Microsoft Azure 17

Design Docker applications .. 17

Common container design principles ... 18

Container equals a process .. 18

Monolithic applications .. 18

Monolithic application deployed as a container ... 21

Publish a single Docker container app to Azure App Service .. 21

State and data in Docker applications.. 22

Service-oriented applications .. 25

Orchestrating microservices and multi-container applications for high scalability and availability.... 25

Software platforms for container clustering, orchestration, and scheduling ... 27

Using container-based orchestrators in Azure ... 28

Using Azure Kubernetes Service .. 29

Development environment for Kubernetes ... 30

Get started with Azure Kubernetes Service (AKS) ... 31

ii Contents

Deploy with Helm charts into Kubernetes clusters ... 31

Additional resources ... 32

Using Azure Service Fabric ... 32

Stateless versus stateful microservices .. 35

Using Azure Service Fabric Mesh ... 36

Choosing orchestrators in Azure ... 37

Deploy to Azure Kubernetes Service (AKS) .. 38

Create the AKS environment in Azure ... 38

Create the AKS cluster .. 38

Development environment for Docker apps ... 40

Development tools choices: IDE or editor .. 40

Language and framework choices .. 41

Inner-loop development workflow for Docker apps .. 41

Building a single app within a Docker container using Visual Studio Code and Docker CLI............. 42

Use Docker Tools in Visual Studio on Windows ... 52

Configure your local environment .. 52

Docker support in Visual Studio .. 52

Configure Docker tools .. 55

Using Windows PowerShell commands in a DockerFile to set up Windows Containers (Docker

standard based) ... 56

Build ASP.NET Core applications deployed as Linux containers into an AKS/Kubernetes orchestrator

 .. 57

Creating the ASP.NET Core Project using Visual Studio 2022.. 57

Register the Solution in an Azure Container Registry (ACR) .. 66

Docker application DevOps workflow with Microsoft tools ... 74

Steps in the outer-loop DevOps workflow for a Docker application ... 75

Step 1: Inner-loop development workflow .. 76

Step 2: Source-Code Control integration and management with Azure DevOps Services and Git 76

Step 3: Build, CI, Integrate, and Test with Azure DevOps Services/GitHub and Docker 76

Step 4: CD, Deploy ... 83

Step 5: Run and manage ... 89

Step 6: Monitor and diagnose .. 89

iii Contents

Create CI/CD pipelines in Azure DevOps Services for a .NET application on Containers and

deploying to a Kubernetes cluster ... 89

Run, manage, and monitor Docker production environments .. 93

Run composed and microservices-based applications in production environments 93

Introduction to orchestrators, schedulers, and container clusters ... 93

Manage production Docker environments .. 94

Container Service and management tools ... 94

Azure Service Fabric .. 95

Monitor containerized application services ... 96

Azure Monitor ... 96

Security and backup services... 96

Containerized Docker Application Lifecycle key takeaways ... 98

1 CHAPTER 1 | Overview of Containers and Docker

CHAPTER 1

Overview of Containers

and Docker

Containerization is an approach to software development in which an application or service, its

dependencies, and its configuration (abstracted as deployment manifest files) are packaged together as

a container image. You then can test the containerized application as a unit and deploy it as a container

image instance to the host operating system (OS).

Just as shipping containers allow goods to be transported by ship, train, or truck regardless of the

cargo inside, software containers act as a standard unit of software deployment that can contain

different code and dependencies. Containerizing software this way enables developers and IT

professionals to deploy them across environments with little or no modification.

Containers also isolate applications from each other on a shared OS. Containerized applications run

on top of a container host that in turn runs on the OS (Linux or Windows). Containers therefore have a

much smaller footprint than virtual machine (VM) images.

Each container can run a whole web application or a service, as shown in Figure 1-1. In this example,

Docker host is a container host, and App1, App2, Svc1, and Svc2 are containerized applications or

services.

Figure 1-1. Multiple containers running on a container host

Another benefit you can derive from containerization is scalability. You can scale out quickly by

creating new containers for short-term tasks. From an application point of view, instantiating an

image (creating a container) is similar to instantiating a process like a service or web app. For

reliability, however, when you run multiple instances of the same image across multiple host servers,

you typically want each container (image instance) to run in a different host server or VM in different

fault domains.

In short, containers offer the benefits of isolation, portability, agility, scalability, and control across the

entire application lifecycle workflow. The most important benefit is the environment isolation

provided between Dev and Ops.

2 CHAPTER 1 | Overview of Containers and Docker

Learn Docker
Docker is an open-source project for automating the deployment of applications as portable, self-

sufficient containers that can run on the cloud or on-premises. Docker is also a company that

promotes and evolves this technology, working in collaboration with cloud, Linux, and Windows

vendors, including Microsoft.

Figure 1-2. Docker deploys containers at all layers of the hybrid cloud

As shown in the above diagram, Docker containers can run anywhere, on-premises in the customer

datacenter, in an external service provider or in the cloud, on Azure. Docker image containers can also

run natively on Linux and Windows. However, Windows images can run only on Windows hosts and

Linux images can run on Linux hosts and Windows hosts (using a Hyper-V Linux VM, so far), where

host means a server or a VM.

Developers can use development environments on Windows, Linux, or macOS. On the development

computer, the developer runs a Docker host where Docker images are deployed, including the app

and its dependencies. Developers who work on Linux or on the Mac, use a Docker host that’s Linux-

based, and they can only create images for Linux containers. (Developers working on the Mac can edit

code or run the Docker command-line interface (CLI) from macOS, but as of this writing, containers

don’t run directly on macOS.) Developers who work on Windows can create images for either Linux or

Windows Containers.

To host containers in development environments and provide additional developer tools, Docker

ships Docker Desktop for Windows or for macOS. These products install the necessary VM (the Docker

host) to host the containers.

To run Windows Containers, there are two types of runtimes:

• Windows Server Containers provide application isolation through process and namespace

isolation technology. A Windows Server Container shares a kernel with the container host and

with all containers running on the host.

• Hyper-V Containers expand on the isolation provided by Windows Server Containers by

running each container in a highly optimized virtual machine. In this configuration, the kernel

of the container host isn’t shared with the Hyper-V Containers, providing better isolation.

https://www.docker.com/
https://github.com/docker/docker
https://www.docker.com/
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://hub.docker.com/editions/community/docker-ce-desktop-mac
https://docs.microsoft.com/virtualization/windowscontainers/about/

3 CHAPTER 1 | Overview of Containers and Docker

The images for these containers are created and work just the same way. The difference is in how the

container is created from the image—running a Hyper-V Container requires an extra parameter. For

details, see Hyper-V Containers.

Comparing Docker containers with virtual machines

Figure 1-3 shows a comparison between VMs and Docker containers.

Figure 1-3. Comparison of traditional virtual machines to Docker containers

As shown in the above diagram, for VMs, there are three base layers in the host server. From the

bottom-up: Infrastructure, Host Operating System, and a Hypervisor. On top of all that, each VM has

its own OS and all necessary libraries. On the other hand, for Docker, the host server only has the

Infrastructure and the OS. On top of that, the container engine keeps containers isolated, but lets

them share the single base OS’s services.

Because containers require far fewer resources (for example, they don’t need a full OS), they’re easy to

deploy and they start fast. This allows you to have higher density, meaning that it allows you to run

more services on the same hardware unit, thereby reducing costs.

As a side effect of running on the same kernel, you get less isolation than VMs.

The main goal of an image is to ensure the same environment (dependencies) across different

deployments. This means that you can debug it on your machine and then deploy it to another

machine, the same environment guaranteed.

A container image is a way to package an app or service and deploy it in a reliable and reproducible

way. You could say that Docker isn’t only a technology but also a philosophy and a process.

https://docs.microsoft.com/virtualization/windowscontainers/manage-containers/hyperv-container

4 CHAPTER 1 | Overview of Containers and Docker

When using Docker, you won’t hear developers say, “It works on my machine, why not in production?”

They can just say, “It runs on Docker”, because the packaged Docker application can be executed on

any supported Docker environment, and it runs the way it was intended to on all deployment targets

(such as Dev, QA, staging, and production).

A simple analogy

Perhaps a simple analogy can help getting the grasp of the core concept of Docker.

Let’s go back in time to the 1950s for a moment. There were no word processors, and the

photocopiers were used everywhere (well, kind of).

Imagine you’re responsible for quickly issuing batches of letters as required, to mail them to

customers, using real paper and envelopes, to be delivered physically to each customer’s address

(there was no email back then).

At some point, you realize the letters are just a composition of a large set of paragraphs, which are

picked and arranged as needed, according to the purpose of the letter, so you devise a system to

issue letters quickly, expecting to get a hefty raise.

The system is simple:

1. You begin with a deck of transparent sheets containing one paragraph each.

2. To issue a set of letters, you pick the sheets with the paragraphs you need, then you stack and

align them so they look and read fine.

3. Finally, you place the set in the photocopier and press start to produce as many letters as

required.

So, simplifying, that’s the core idea of Docker.

In Docker, each layer is the resulting set of changes that happen to the filesystem after executing a

command, such as, installing a program.

So, when you “look” at the filesystem after the layer has been copied, you see all the files, included the

layer when the program was installed.

You can think of an image as an auxiliary read-only hard disk ready to be installed in a “computer”

where the operating system is already installed.

Similarly, you can think of a container as the “computer” with the image hard disk installed. The

container, just like a computer, can be powered on or off.

Learn Docker specific terminologies
This section lists terms and definitions you should be familiar with before getting deeper into Docker.

For further definitions, see the extensive glossary provided by Docker.

Container image: A package with all the dependencies and information needed to create a container.

An image includes all the dependencies (such as frameworks) plus deployment and execution

https://docs.docker.com/glossary/

5 CHAPTER 1 | Overview of Containers and Docker

configuration to be used by a container runtime. Usually, an image derives from multiple base images

that are layers stacked on top of each other to form the container’s filesystem. An image is immutable

once it has been created.

Dockerfile: A text file that contains instructions for building a Docker image. It’s like a batch script,

the first line states the base image to begin with and then follow the instructions to install required

programs, copy files, and so on, until you get the working environment you need.

Build: The action of building a container image based on the information and context provided by its

Dockerfile, plus additional files in the folder where the image is built. You can build images with the

following Docker command:

docker build

Container: An instance of a Docker image. A container represents the execution of a single

application, process, or service. It consists of the contents of a Docker image, an execution

environment, and a standard set of instructions. When scaling a service, you create multiple instances

of a container from the same image. Or a batch job can create multiple containers from the same

image, passing different parameters to each instance.

Volumes: Offer a writable filesystem that the container can use. Since images are read-only but most

programs need to write to the filesystem, volumes add a writable layer, on top of the container image,

so the programs have access to a writable filesystem. The program doesn’t know it’s accessing a

layered filesystem, it’s just the filesystem as usual. Volumes live in the host system and are managed

by Docker.

Tag: A mark or label you can apply to images so that different images or versions of the same image

(depending on the version number or the target environment) can be identified.

Multi-stage Build: Is a feature, since Docker 17.05 or higher, that helps to reduce the size of the final

images. For example, a large base image, containing the SDK can be used for compiling and

publishing and then a small runtime-only base image can be used to host the application.

Repository (repo): A collection of related Docker images, labeled with a tag that indicates the image

version. Some repos contain multiple variants of a specific image, such as an image containing SDKs

(heavier), an image containing only runtimes (lighter), etc. Those variants can be marked with tags. A

single repo can contain platform variants, such as a Linux image and a Windows image.

Registry: A service that provides access to repositories. The default registry for most public images is

Docker Hub (owned by Docker as an organization). A registry usually contains repositories from

multiple teams. Companies often have private registries to store and manage images they’ve created.

Azure Container Registry is another example.

Multi-arch image: For multi-architecture, it’s a feature that simplifies the selection of the appropriate

image, according to the platform where Docker is running. For example, when a Dockerfile requests a

base image FROM mcr.microsoft.com/dotnet/sdk:6.0 from the registry, it actually gets 6.0-

nanoserver-20H2, 6.0-nanoserver-1809 or 6.0-bullseye-slim, depending on the operating system

and version where Docker is running.

https://hub.docker.com/

6 CHAPTER 1 | Overview of Containers and Docker

Docker Hub: A public registry to upload images and work with them. Docker Hub provides Docker

image hosting, public or private registries, build triggers and web hooks, and integration with GitHub

and Bitbucket.

Azure Container Registry: A public resource for working with Docker images and its components in

Azure. This provides a registry that’s close to your deployments in Azure and that gives you control

over access, making it possible to use your Azure Active Directory groups and permissions.

Docker Trusted Registry (DTR): A Docker registry service (from Docker) that can be installed on-

premises so it lives within the organization’s datacenter and network. It’s convenient for private

images that should be managed within the enterprise. Docker Trusted Registry is included as part of

the Docker Datacenter product.

Docker Desktop: Development tools for Windows and macOS for building, running, and testing

containers locally. Docker Desktop for Windows provides development environments for both Linux

and Windows Containers. The Linux Docker host on Windows is based on a Hyper-V virtual machine.

The host for Windows Containers is directly based on Windows. Docker Desktop for Mac is based on

the Apple Hypervisor framework and the xhyve hypervisor, which provides a Linux Docker host virtual

machine on macOS. Docker Desktop for Windows and for Mac replaces Docker Toolbox, which was

based on Oracle VirtualBox.

Compose: A command-line tool and YAML file format with metadata for defining and running multi-

container applications. You define a single application based on multiple images with one or more

.yml files that can override values depending on the environment. After you’ve created the definitions,

you can deploy the whole multi-container application with a single command (docker-compose up)

that creates a container per image on the Docker host.

Cluster: A collection of Docker hosts exposed as if it were a single virtual Docker host, so that the

application can scale to multiple instances of the services spread across multiple hosts within the

cluster. Docker clusters can be created with Kubernetes, Azure Service Fabric, Docker Swarm and

Mesosphere DC/OS.

Orchestrator: A tool that simplifies the management of clusters and Docker hosts. Orchestrators

enable you to manage their images, containers, and hosts through a command-line interface (CLI) or a

graphical UI. You can manage container networking, configurations, load balancing, service discovery,

high availability, Docker host configuration, and more. An orchestrator is responsible for running,

distributing, scaling, and healing workloads across a collection of nodes. Typically, orchestrator

products are the same products that provide cluster infrastructure, like Kubernetes and Azure Service

Fabric, among other offerings in the market.

Learn docker containers, images, and registries
When using Docker, you create an app or service and package it and its dependencies into a

container image. An image is a static representation of the app or service and its configuration and

dependencies.

To run the app or service, the app’s image is instantiated to create a container, which will be running

on the Docker host. Containers are initially tested in a development environment or PC.

https://www.microsoft.com/cloud-platform/server-virtualization
https://github.com/mist64/xhyve

7 CHAPTER 1 | Overview of Containers and Docker

You store images in a registry that acts as a library of images. You need a registry when deploying to

production orchestrators. Docker maintains a public registry via Docker Hub; other vendors provide

registries for different collections of images, including Azure Container Registry. Alternatively,

enterprises can have a private registry on-premises for their own Docker images.

Figure 1-4 shows how images and registries in Docker relate to other components. It also shows the

multiple registry offerings from vendors.

Figure 1-4. Taxonomy of Docker terms and concepts

The registry is like a bookshelf where images are stored and available to be pulled for building

containers to run services or web apps. There are private Docker registries on-premises and on the

public cloud. Docker Hub is a public registry maintained by Docker, along the Docker Trusted Registry

an enterprise-grade solution, Azure offers the Azure Container Registry. AWS, Google and others also

have container registries.

By putting images in a registry, you can store static and immutable application bits, including all

of their dependencies, at a framework level. You then can version and deploy images in multiple

environments and thus provide a consistent deployment unit.

https://hub.docker.com/
https://azure.microsoft.com/services/container-registry/

8 CHAPTER 1 | Overview of Containers and Docker

Private image registries, either hosted on-premises or in the cloud, are recommended when:

• Your images must not be shared publicly due to confidentiality.

• You want to have minimum network latency between your images and your chosen

deployment environment. For example, if your production environment is Azure, you probably

want to store your images in Azure Container Registry so that network latency is minimal. In a

similar way, if your production environment is on-premises, you might want to have an on-

premises Docker Trusted Registry available within the same local network.

Road to modern applications based on containers
You’re probably reading this book because you’re planning the development of new applications or

you’re assessing the impact of using Docker, Containers, and new approaches like Microservices in

your company.

The adoption of new development paradigms must be taken with caution before starting a project, to

assess the impact on your dev teams, your budget, or your infrastructure.

Microsoft has been working on rich guidance, sample applications, and a suite of e-books that can

help you make an informed decision and guide your team through a successful development,

deployment, and operations of your new applications.

This book belongs to a Microsoft suite of guides that cover many of the needs and challenges you’ll

face during the process of developing new modern applications based on containers.

You can find additional Microsoft e-books related to Docker containers in the list below:

• .NET Microservices: Architecture for Containerized .NET Applications

https://learn.microsoft.com/dotnet/architecture/microservices/

• Modernize existing .NET applications with Azure cloud and Windows Containers

https://learn.microsoft.com/dotnet/architecture/modernize-with-azure-containers/

https://azure.microsoft.com/services/container-registry/
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://docs.microsoft.com/en-us/dotnet/architecture/modernize-with-azure-containers/

9 CHAPTER 2 | Introduction to the Docker application life cycle

CHAPTER 2

Introduction to the Docker

application life cycle

The life cycle of containerized applications is a journey that begins with the developer. The developer

chooses to implement containers and Docker because it eliminates frictions in deployments and IT

operations, which ultimately helps everyone to be more agile, more productive end-to-end, and faster.

Containers as the foundation for DevOps

collaboration
By the very nature of the containers and Docker technology, developers can share their software and

dependencies easily with IT operations and production environments while eliminating the typical “it

works on my machine” excuse. Containers solve application conflicts between different environments.

Indirectly, containers and Docker bring developers and IT operations closer together, making it easier

for them to collaborate effectively. Adopting the container workflow provides many customers

with the DevOps continuity they’ve sought but previously had to implement via more complex

configuration for release and build pipelines. Containers simplify the build/test/deploy pipelines

in DevOps.

Figure 2-1. Main workloads per “personas” in the life cycle for containerized Docker applications

With Docker containers, developers own what’s within the container (application and service, and

dependencies to frameworks and components) and how the containers and services behave together

as an application composed by a collection of services. The interdependencies of the multiple

containers are defined in a docker-compose.yml file, or what could be called a deployment manifest.

Meanwhile, IT operations teams (IT professionals and management) can focus on the management

10 CHAPTER 2 | Introduction to the Docker application life cycle

of production environments; infrastructure; scalability; monitoring; and, ultimately, ensuring that the

applications are delivering properly for the end users, without having to know the contents of the

various containers. Hence, the name “container,” recalling the analogy to real-world shipping

containers. Thus, the owners of a container’s content need not concern themselves with how the

container will be shipped, and the shipping company transports a container from its point of origin

to its destination without knowing or caring about the contents. In a similar manner, developers can

create and own the contents within a Docker container without the need to concern themselves with

the “transport” mechanisms.

In the pillar on the left side of Figure 2-1, developers write and run code locally in Docker containers

by using Docker for Windows or Mac. They define the operating environment for the code by using a

Dockerfile that specifies the base operating system to run as well as the build steps for building their

code into a Docker image. The developers define how one or more images will interoperate using the

aforementioned docker-compose.yml file deployment manifest. As they complete their local

development, they push their application code plus the Docker configuration files to the code

repository of their choice (that is, Git repository).

The DevOps pillar defines the build–Continuous Integration (CI) pipelines using the Dockerfile

provided in the code repository. The CI system pulls the base container images from the selected

Docker registry and builds the custom Docker images for the application. The images then are

validated and pushed to the Docker registry used for the deployments to multiple environments.

In the pillar on the right, operations teams manage deployed applications and infrastructure in

production while monitoring the environment and applications so that they can provide feedback and

insights to the development team about how the application might be improved. Container apps are

typically run in production using container orchestrators like Kubernetes, where usually Helm charts

are used to configure deployment units, instead of docker-compose files.

The two teams are collaborating through a foundational platform (Docker containers) that provides

a separation of concerns as a contract, while greatly improving the two teams’ collaboration in the

application life cycle. The developers own the container contents, its operating environment, and the

container interdependencies, whereas the operations teams take the built images along with the

manifest and runs them in their orchestration system.

Challenges in the application life cycle when using Docker.

There are many reasons that will increase the number of containerized applications in the upcoming

years, and one of these reasons is the creation of applications based on microservices.

During the last 15 years, the use of web services has been the base of thousands of applications, and

probably, after a few years, you’ll find the same situation with microservice-based applications

running on Docker containers.

It is also worth to mention that you can also use Docker containers for monolithic applications and

you still get most of the benefits of Docker. Containers are not targeting only microservices.

The use of Docker containerization and microservices causes new challenges in the development

process of your organizations and therefore, you need a solid strategy to maintain many containers

https://kubernetes.io/
https://helm.sh/

11 CHAPTER 2 | Introduction to the Docker application life cycle

and microservices running on production systems. Eventually, enterprise applications will have

hundreds or thousands of containers/instances running in production.

These challenges create new demands when using DevOps tools, so you’ll have to define new

processes in your DevOps activities, and find answers for the following type of questions:

• Which tools can I use for development, CI/CD, management and operations??

• How can my company manage errors in containers when running in production?

• How can we change pieces of our software in production with minimum downtime?

• How can we scale and monitor our production system?

• How can we include the testing and deployment of containers in our release pipeline?

• How can we use Open Source tools/platforms for containers in Microsoft Azure?

If you can answer all those questions, you’ll be better prepared to move your applications (existing or

new apps) to Docker containers.

Introduction to a generic end-to-end Docker application life cycle

workflow

Figure 2-2 presents a more detailed workflow for a Docker application life cycle, focusing in this

instance on specific DevOps activities and assets.

Figure 2-2. High-level workflow for the Docker containerized application life cycle

Everything begins with the developer, who starts writing code in the inner-loop workflow. The inner-

loop stage is where developers define everything that happens before pushing code into the code

repository (for example, a source control system such as Git). After it’s committed, the repository

triggers Continuous Integration (CI) and the rest of the workflow.

12 CHAPTER 2 | Introduction to the Docker application life cycle

The inner loop consists of typical steps like “code,” “run,” “test,” and “debug,” plus the additional steps

needed right before running the app locally. This is the developer’s process to run and test the app as

a Docker container. The inner-loop workflow will be explained in the sections that follow.

Taking a step back to look at the end-to-end workflow, the DevOps workflow is more than a

technology or a tool set, it’s a mindset that requires cultural evolution. It’s people, processes, and the

appropriate tools to make your application life cycle faster and more predictable. Enterprises that

adopt a containerized workflow typically restructure their organizations to represent people and

processes that match the containerized workflow.

Practicing DevOps can help teams respond faster together to competitive pressures by replacing

error-prone manual processes with automation, which results in improved traceability and repeatable

workflows. Organizations also can manage environments more efficiently and realize cost savings with

a combination of on-premises and cloud resources as well as tightly integrated tooling.

When implementing your DevOps workflow for Docker applications, you’ll see that Docker

technologies are present in almost every stage of the workflow, from your development box while

working in the inner loop (code, run, debug), the build-test-CI phase, and, finally, the deployment of

those containers to the staging and production environments.

Improvement of quality practices helps to identify defects early in the development cycle, which

reduces the cost of fixing them. By including the environment and dependencies in the image and

adopting a philosophy of deploying the same image across multiple environments, you promote a

discipline of extracting the environment-specific configurations making deployments more reliable.

Rich data obtained through effective instrumentation (monitoring and diagnostics) provides insight

into performance issues and user behavior to guide future priorities and investments.

DevOps should be considered a journey, not a destination. It should be implemented incrementally

through appropriately scoped projects from which you can demonstrate success, learn, and evolve.

Benefits of DevOps for containerized applications

Here are some of the most important benefits provided by a solid DevOps workflow:

• Deliver better-quality software, faster and with better compliance.

• Drive continuous improvement and adjustments earlier and more economically.

• Increase transparency and collaboration among stakeholders involved in delivering and

operating software.

• Control costs and utilize provisioned resources more effectively while minimizing security

risks.

• Plug and play well with many of your existing DevOps investments, including investments in

open-source.

13 CHAPTER 3 | Introduction to the Microsoft platform and tools for containerized apps

CHAPTER 3

Introduction to the

Microsoft platform

and tools for containerized

apps

Vision: Create an adaptable, enterprise-grade, containerized application life cycle that spans your

development, IT operations, and production management.

Figure 3-1 shows the main pillars in the life cycle of Docker apps classified by the type of work

delivered by multiple teams (app-development, DevOps infrastructure processes, and IT management

and operations). Usually, in the enterprise, the profiles of “the persona” responsible for each area are

different. So are their skills.

14 CHAPTER 3 | Introduction to the Microsoft platform and tools for containerized apps

Figure 3-1. Main pillars in the life cycle for containerized Docker applications with Microsoft platform and tools

A containerized Docker life-cycle workflow can be initially prescriptive based on “by-default product

choices,” making it easier for developers to get started faster, but it’s fundamental that under the

hood there must be an open framework so that it will be a flexible workflow capable of adjusting to

the different contexts from each organization or enterprise. The workflow infrastructure (components

and products) must be flexible enough to cover the environment that each company will have in the

future, even being capable of swapping development or DevOps products to others. This flexibility,

openness, and the broad choice of technologies in the platform and infrastructure are precisely the

Microsoft priorities for containerized Docker applications, as explained in the chapters that follow.

Table 3-1 demonstrates that the intention of the Azure DevOps for containerized Docker applications

is to provide an open DevOps workflow so that you can choose what products to use for each phase

(Microsoft or third-party) while providing a simplified workflow that provides “by-default-products”

already connected; thus, you can quickly get started with your enterprise-level DevOps workflow for

Docker apps.

Table 3-1. DevOps workflows, open to any technology

Host Microsoft technologies Third-party (Azure pluggable)

Platform for

Docker apps

• Microsoft Visual Studio and

Visual Studio Code

• .NET

• Microsoft Azure Kubernetes

Service (AKS)

• Azure Container Registry\

• Any code editor (for example, Sublime)

• Any language (Node.js, Java, Go, etc.)

• Any orchestrator and scheduler

• Any Docker registry\

15 CHAPTER 3 | Introduction to the Microsoft platform and tools for containerized apps

Host Microsoft technologies Third-party (Azure pluggable)

DevOps for

Docker apps

• Azure DevOps Services

• Microsoft Team Foundation

Server

• GitHub

• Azure Kubernetes Service

(AKS)\

• GitHub, Git, Subversion, etc.

• Jenkins, Chef, Puppet, Velocity, CircleCI,

TravisCI, etc.

• On-premises Docker Datacenter, Kubernetes,

Mesos DC/OS, etc.\

Management

and

monitoring

• Azure Monitor • Marathon, Chronos, etc.\

The Microsoft platform and tools for containerized Docker apps, as defined in Table 3-1, comprise the

following components:

• Platform for Docker Apps development The development of a service, or collection of

services that make up an “app.” The development platform provides all the work developers

requires prior to pushing their code to a shared code repository. Developing services,

deployed as containers, are similar to the development of the same apps or services without

Docker. You continue to use your preferred language (.NET, Node.js, Go, etc.) and preferred

editor or IDE like Visual Studio or Visual Studio Code. However, rather than consider Docker a

deployment destination, you develop your services in the Docker environment. You build, run,

test, and debug your code in containers locally, providing the destination environment at

development time. By providing the destination environment locally, Docker containers set up

what will drastically help you improve your DevOps life cycle. Visual Studio and Visual Studio

Code have extensions to integrate Docker containers within your development process.

• DevOps for Docker Apps Developers creating Docker applications can use Azure DevOps,

GitHub or any other third-party product, like Jenkins, to build out a comprehensive

automated application life-cycle management (ALM).

 With Azure DevOps and/or GitHub, developers can create container-focused DevOps for a

fast, iterative process that covers source-code control from anywhere (Azure DevOps-Git,

GitHub, any remote Git repository, or Subversion), Continuous Integration (CI), internal unit

tests, inter-container/service integration tests, Continuous Delivery (CD), and release

management (RM). Developers also can automate their Docker application releases into Azure

Kubernetes Service (AKS), from development to staging and production environments.

• Management and Monitoring IT can manage and monitor production applications and

services in several ways, integrating both perspectives in a consolidated experience.

– Azure portal Azure Kubernetes Service (AKS) helps you to set up and maintain your

Docker environments. You can also use other orchestrators to visualize and configure

your cluster.

– Docker tools You can manage your container applications using familiar tools.

There’s no need to change your existing Docker management practices to move

container workloads to the cloud. Use the application management tools you’re

https://azure.microsoft.com/services/devops/

16 CHAPTER 3 | Introduction to the Microsoft platform and tools for containerized apps

already familiar with and connect via the standard API endpoints for the orchestrator

of your choice. You also can use other third-party tools to manage your Docker

applications or even CLI Docker tools.

 Even if you’re familiar with Linux commands, you can manage your container

applications using Microsoft Windows and PowerShell with a Linux Subsystem

command line and the products (Docker, Kubernetes…) clients running on this Linux

Subsystem capability. You’ll learn more about using these tools under Linux

Subsystem using your favorite Microsoft Windows OS later in this book.

– Open-source tools Because AKS exposes the standard API endpoints for the

orchestration engine, the most popular tools are compatible with AKS and, in most

cases, will work out of the box—including visualizers, monitoring, command-line

tools, and even future tools as they become available.

– GitHub Advanced Security GitHub Advanced Security offers a suite of tools for

securing the software supply chain that can seamlessly integrate security into the

daily workflow of teams developing containerized applications.

– Azure Monitor Is Azure’s solution to monitor every angle of your production

environment. You can monitor production Docker applications by just setting up its

SDK into your services so that you can get system-generated log data from the

applications.

Thus, Microsoft offers a complete foundation for an end-to-end containerized Docker application life

cycle. However, it’s a collection of products and technologies that allow you to optionally select and

integrate with existing tools and processes. The flexibility in a broad approach along with the strength

in the depth of capabilities place Microsoft in a strong position for containerized Docker application

development.

https://docs.github.com/github/getting-started-with-github/about-github-advanced-security

17 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

CHAPTER 4

Designing and developing

containerized apps using

Docker and Microsoft

Azure

Vision: Design and develop scalable solutions with Docker in mind.

There are many great-fit use cases for containers, not just for microservices-oriented architectures, but

also when you simply have regular services or web applications to run and you want to reduce frictions

between development and production environment deployments.

Design Docker applications
Chapter 1 introduced the fundamental concepts regarding containers and Docker. That information is

the basic level of information you need to get started. But, enterprise applications can be complex and

composed of multiple services instead of a single service or container. For those optional use cases,

you need to know additional approaches to design, such as Service-Oriented Architecture (SOA) and

the more advanced microservices concepts and container orchestration concepts. The scope of this

document is not limited to microservices but to any Docker application life cycle, therefore, it does

not explore microservices architecture in depth because you can also use containers and Docker with

regular SOA, background tasks or jobs, or even with monolithic application deployment approaches.

More info To learn more about enterprise applications and microservices architecture in depth, read

the guide NET Microservices: Architecture for Containerized .NET Applications that you can also

download from https://aka.ms/MicroservicesEbook.

However, before you get into the application life cycle and DevOps, it’s important to know how you’re

going to design and construct your application and what are your design choices.

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://aka.ms/MicroservicesEbook

18 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Common container design principles
Ahead of getting into the development process there are a few basic concepts worth mentioning with

regard to how you use containers.

Container equals a process

In the container model, a container represents a single process. By defining a container as a process

boundary, you begin to create the primitives used to scale, or batch-off, processes. When you run a

Docker container, you’ll see an ENTRYPOINT definition. This defines the process and the lifetime of

the container. When the process completes, the container life-cycle ends. There are long-running

processes, such as web servers, and short-lived processes, such as batch jobs, which might have

been implemented as Microsoft Azure WebJobs. If the process fails, the container ends, and the

orchestrator takes over. If the orchestrator was instructed to keep five instances running and one fails,

the orchestrator will create another container to replace the failed process. In a batch job, the process

is started with parameters. When the process completes, the work is complete.

You might find a scenario in which you want multiple processes running in a single container. In any

architecture document, there’s never a “never,” nor is there always an “always.” For scenarios requiring

multiple processes, a common pattern is to use Supervisor.

Monolithic applications
In this scenario, you’re building a single and monolithic web application or service and deploying it as

a container. Within the application, the structure might not be monolithic; it might comprise several

libraries, components, or even layers (application layer, domain layer, data access layer, etc.).

Externally, it’s a single container, like a single process, single web application, or single service.

To manage this model, you deploy a single container to represent the application. To scale it, just add

a few more copies with a load balancer in front. The simplicity comes from managing a single

deployment in a single container or virtual machine (VM).

Following the principal that a container does one thing only, and does it in one process, the

monolithic pattern is in conflict. You can include multiple components/libraries or internal layers

within each container, as illustrated in Figure 4-1.

https://docs.docker.com/engine/reference/builder/#entrypoint
https://github.com/Azure/azure-webjobs-sdk/wiki
http://supervisord.org/

19 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-1. An example of monolithic application architecture

A monolithic app has all or most of its functionality within a single process or container and it’s

componentized in internal layers or libraries. The downside to this approach comes if or when the

application grows, requiring it to scale. If the entire application scaled, it’s not really a problem.

However, in most cases, a few parts of the application are the choke points that require scaling,

whereas other components are used less.

Using the typical e-commerce example, what you likely need is to scale the product information

component. Many more customers browse products than purchase them. More customers use their

basket than use the payment pipeline. Fewer customers add comments or view their purchase history.

And you likely have only a handful of employees, in a single region, that need to manage the content

and marketing campaigns. By scaling the monolithic design, all of the code is deployed multiple times.

In addition to the “scale-everything” problem, changes to a single component require complete

retesting of the entire application as well as a complete redeployment of all the instances.

The monolithic approach is common, and many organizations are developing with this architectural

method. Many enjoy good enough results, whereas others encounter limits. Many designed their

applications in this model because the tools and infrastructure were too difficult to build SOAs, and

they didn’t see the need—until the app grew.

From an infrastructure perspective, each server can run many applications within the same host and

have an acceptable ratio of efficiency in your resources usage, as shown in Figure 4-2.

20 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-2. A host running multiple apps/containers

Finally, from an availability perspective, monolithic applications must be deployed as a whole; that

means that in case you must stop and start, all functionality and all users will be affected during the

deployment window. In certain situations, the use of Azure and containers can minimize these

situations and reduce the probability of downtime of your application, as you can see in Figure 4-3.

You can deploy monolithic applications in Azure by using dedicated VMs for each instance. Using

Azure VM Scale Sets, you can scale the VMs easily.

You can also use Azure App Services to run monolithic applications and easily scale instances without

having to manage the VMs. Azure App Services can run single instances of Docker containers, as well,

simplifying the deployment.

You can deploy multiple VMs as Docker hosts and run any number of containers per VM. Then, by

using an Azure Load Balancer, as illustrated in the Figure 4-3, you can manage scaling.

Figure 4-3. Multiple hosts scaling out a single Docker application

You can manage the deployment of the hosts themselves via traditional deployment techniques.

You can manage Docker containers from the command line by using commands like docker run and

docker-compose up, and you can also automate it in Continuous Delivery (CD) pipelines and deploy

to Docker hosts from Azure DevOps Services, for instance.

https://docs.microsoft.com/azure/virtual-machine-scale-sets/
https://azure.microsoft.com/services/app-service/

21 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Monolithic application deployed as a container

There are benefits to using containers to manage monolithic deployments. Scaling the instances of

containers is far faster and easier than deploying additional VMs.

Deploying updates as Docker images is far faster and network efficient. Docker containers typically

start in seconds, speeding rollouts. Tearing down a Docker container is as easy as invoking the docker

stop command, typically completing in less than a second.

Because containers are inherently immutable, by design, you never need to worry about corrupted

VMs because an update script forgot to account for some specific configuration or file left on disk.

Although monolithic apps can benefit from Docker, we’re touching on only the tips of the benefits.

The larger benefits of managing containers come from deploying with container orchestrators that

manage the various instances and life cycle of each container instance. Breaking up the monolithic

application into subsystems that can be scaled, developed, and deployed individually is your entry

point into the realm of microservices.

To learn about how to “lift and shift” monolithic applications with containers and how you can

modernize your applications, you can read this additional Microsoft guide, Modernize existing .NET

applications with Azure cloud and Windows Containers, which you can also download as PDF from

https://aka.ms/LiftAndShiftWithContainersEbook.

Publish a single Docker container app to Azure App Service

Either because you want to get a quick validation of a container deployed to Azure or because the

app is simply a single-container app, Azure App Services provides a great way to provide scalable

single-container services.

Using Azure App Service is intuitive and you can get up and running quickly because it provides great

Git integration to take your code, build it in Microsoft Visual Studio, and directly deploy it to Azure.

But, traditionally (with no Docker), if you needed other capabilities, frameworks, or dependencies that

aren’t supported in App Services, you needed to wait for it until the Azure team updates those

dependencies in App Service or switched to other services like Service Fabric, Cloud Services, or even

plain VMs, for which you have further control and can install a required component or framework for

your application.

Now, as shown in Figure 4-4, when using Visual Studio 2022, container support in Azure App Service

gives you the ability to include whatever you want in your app environment. If you added a

dependency to your app, because you’re running it in a container, you get the capability of including

those dependencies in your Dockerfile or Docker image.

https://docs.microsoft.com/en-us/dotnet/architecture/modernize-with-azure-containers/
https://docs.microsoft.com/en-us/dotnet/architecture/modernize-with-azure-containers/
https://aka.ms/LiftAndShiftWithContainersEbook

22 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-4. Publishing a container to Azure App Service from Visual Studio apps/containers

Figure 4-4 also shows that the publish flow pushes an image through a Container Registry, which can

be the Azure Container Registry (a registry near to your deployments in Azure and secured by Azure

Active Directory groups and accounts) or any other Docker Registry like Docker Hub or on-premises

registries.

State and data in Docker applications
In most cases, you can think of a container as an instance of a process. A process does not maintain

persistent state. While a container can write to its local storage, assuming that an instance will be

around indefinitely is like assuming that a single location in memory will be durable. Container

images, like processes, should be assumed to have multiple instances and that they will eventually be

killed; if they’re managed with a container orchestrator, it should be assumed that they might get

moved from one node or VM to another.

The following solutions are used to manage persistent data in Docker applications:

From the Docker host, as Docker Volumes:

• Volumes are stored in an area of the host filesystem that’s managed by Docker.

• Bind mounts can map to any folder in the host filesystem, so access can’t be controlled from

a Docker process and can pose a security risk as a container could access sensitive OS folders.

https://docs.docker.com/engine/admin/volumes/

23 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

• tmpfs mounts are like virtual folders that only exist in the host’s memory and are never

written to the filesystem.

From remote storage:

• Azure Storage provides geo-distributable storage, providing a good long-term persistence

solution for containers.

• Remote relational databases like Azure SQL Database, NoSQL databases like Azure Cosmos

DB, or cache services like Redis.

From the Docker container:

• Docker provides a feature named the overlay file system. This feature implements a copy-on-

write task that stores updated information to the root file system of the container. That

information “lays on top of” the original image on which the container is based. If the

container is deleted from the system, those changes are lost. Therefore, while it’s possible to

save the state of a container within its local storage, designing a system based on this feature

would conflict with the premise of container design, which by default is stateless.

• However, Docker Volumes is now the preferred way to handle local data in Docker. If you

need more information about storage in containers, check on Docker storage drivers and

About images, containers, and storage drivers.

The following provides additional detail about these options.

Volumes are directories mapped from the host OS to directories in containers. When code in the

container has access to the directory, that access is actually to a directory on the host OS. This

directory is not tied to the lifetime of the container itself, and the directory is managed by Docker and

isolated from the core functionality of the host machine. Thus, data volumes are designed to persist

data independently of the life of the container. If you delete a container or an image from the Docker

host, the data persisted in the data volume is not deleted.

Volumes can be named or anonymous (the default). Named volumes are the evolution of Data

Volume Containers and make it easy to share data between containers. Volumes also support

volume drivers that allow you to store data on remote hosts, among other options.

Bind mounts have been available for a long time and allow the mapping of any folder to a mount

point in a container. Bind mounts have more limitations than volumes and some important security

issues, so volumes are the recommended option.

tmpfs mounts are virtual folders that live only in the host’s memory and are never written to the

filesystem. They are fast and secure but use memory and are only meant for non-persistent data.

As shown in Figure 4-5, regular Docker volumes can be stored outside of the containers themselves

but within the physical boundaries of the host server or VM. However, Docker containers cannot

access a volume from one host server or VM to another. In other words, with these volumes, it isn’t

possible to manage data shared between containers that run on different Docker hosts, although it

could be achieved with a volume driver that supports remote hosts.

https://azure.microsoft.com/documentation/services/storage/
https://azure.microsoft.com/services/sql-database/
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/cosmos-db/introduction
https://redis.io/
https://docs.docker.com/engine/userguide/storagedriver/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/

24 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-5. Volumes and external data sources for container-based applications

In addition, when Docker containers are managed by an orchestrator, containers might “move”

between hosts, depending on the optimizations performed by the cluster. Therefore, it isn’t

recommended that you use data volumes for business data. But they are a good mechanism to work

with trace files, temporal files, or similar, that will not impact business data consistency.

Remote data sources and cache tools like Azure SQL Database, Azure Cosmos DB, or a remote cache

like Redis can be used in containerized applications the same way they are used when developing

without containers. This is a proven way to store business application data.

Azure Storage. Business data usually needs to be placed in external resources or databases, like

Azure Storage. Azure Storage provides the following services in the cloud:

• Blob storage stores unstructured object data. A blob can be any type of text or binary data,

such as document or media files (images, audio, and video files). Blob storage is also referred

to as Object storage.

• File storage offers shared storage for legacy applications using the standard SMB protocol.

Azure virtual machines and cloud services can share file data across application components

via mounted shares. On-premises applications can access file data in a share via the File

Service REST API.

• Table storage stores structured datasets. Table storage is a NoSQL key-attribute data store,

which allows rapid development and fast access to large quantities of data.

Relational databases and NoSQL databases. There are many choices for external databases, from

relational databases like SQL Server, PostgreSQL, Oracle, or NoSQL databases like Azure Cosmos DB,

MongoDB, etc. These databases are not going to be explained as part of this guide since they are a

different topic altogether.

25 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Service-oriented applications
Service-Oriented Architecture (SOA) was an overused term that meant many different things to

different people. But as a common denominator, SOA means that you structure the architecture of

your application by decomposing it into several services (most commonly as HTTP services) that can

be classified in different types like subsystems or, in other cases, as tiers.

Today, you can deploy those services as Docker containers, which solve deployment-related issues

because all of the dependencies are included in the container image. However, when you need to

scale out SOAs, you might encounter challenges if you’re deploying based on single instances. This

challenge can be handled using Docker clustering software or an orchestrator. You’ll get to look at

orchestrators in greater detail in the next section, when you explore microservices approaches.

Docker containers are useful (but not required) for both traditional service-oriented architectures and

the more advanced microservices architectures.

At the end of the day, the container clustering solutions are useful for both a traditional SOA

architecture and for a more advanced microservices architecture in which each microservice owns its

data model. And thanks to multiple databases, you can also scale out the data tier instead of working

with monolithic databases shared by the SOA services. However, the discussion about splitting the

data is purely about architecture and design.

Orchestrating microservices and multi-container

applications for high scalability and availability
Using orchestrators for production-ready applications is essential if your application is based on

microservices or split across multiple containers. As introduced previously, in a microservice-based

approach, each microservice owns its model and data so that it will be autonomous from a

development and deployment point of view. But even if you have a more traditional application that’s

composed of multiple services (like SOA), you’ll also have multiple containers or services comprising a

single business application that need to be deployed as a distributed system. These kinds of systems

are complex to scale out and manage; therefore, you absolutely need an orchestrator if you want to

have a production-ready and scalable multi-container application.

Figure 4-6 illustrates deployment into a cluster of an application composed of multiple microservices

(containers).

26 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-6. A cluster of containers

It looks like a logical approach. But how are you handling load balancing, routing, and orchestrating

these composed applications?

The Docker CLI meets the needs of managing one container on one host, but it falls short when it

comes to managing multiple containers deployed on multiple hosts for more complex distributed

applications. In most cases, you need a management platform that will automatically start containers,

scale out containers with multiple instances per image, suspend them, or shut them down when

needed, and ideally also control how they access resources like the network and data storage.

To go beyond the management of individual containers or simple composed apps and move toward

larger enterprise applications with microservices, you must turn to orchestration and clustering

platforms.

From an architecture and development point of view, if you’re building large, enterprise,

microservices-based, applications, it’s important to understand the following platforms and products

that support advanced scenarios:

• Clusters and orchestrators. When you need to scale out applications across many Docker

hosts, such as with a large microservices-based application, it’s critical to be able to manage

all of those hosts as a single cluster by abstracting the complexity of the underlying platform.

That’s what the container clusters and orchestrators provide. Examples of orchestrators are

Azure Service Fabric and Kubernetes. Kubernetes is available in Azure through Azure

Kubernetes Service.

27 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

• Schedulers. Scheduling means to have the capability for an administrator to launch containers

in a cluster, so schedulers also provide a user interface for doing so. A cluster scheduler has

several responsibilities: to use the cluster’s resources efficiently, to set the constraints

provided by the user, to efficiently load-balance containers across nodes or hosts, and to be

robust against errors while providing high availability.

The concepts of a cluster and a scheduler are closely related, so the products provided by different

vendors often provide both sets of capabilities. The section below shows the most important platform

and software choices you have for clusters and schedulers. These orchestrators are widely offered in

public clouds like Azure.

Software platforms for container clustering, orchestration, and

scheduling

Platform Comments

Kubernetes

Kubernetes is an open-source product that

provides functionality that ranges from

cluster infrastructure and container

scheduling to orchestrating capabilities. It

lets you automate deployment, scaling,

and operations of application containers

across clusters of hosts.

Kubernetes provides a container-centric

infrastructure that groups application

containers into logical units for easy

management and discovery.

Kubernetes is mature in Linux, less mature

in Windows.

Azure Kubernetes Service (AKS)

Azure Kubernetes Service (AKS) is a

managed Kubernetes container

orchestration service in Azure that

simplifies Kubernetes cluster’s

management, deployment, and

operations.

https://kubernetes.io/
https://azure.microsoft.com/services/kubernetes-service/

28 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Platform Comments

Azure Service Fabric

Service Fabric is a Microsoft microservices

platform for building applications. It’s an

orchestrator of services and creates

clusters of machines. Service Fabric can

deploy services as containers or as plain

processes. It can even mix services in

processes with services in containers

within the same application and cluster.

Service Fabric clusters can be deployed in

Azure, on-premises or in any cloud.

However, deployment in Azure is

simplified with a managed approach.

Service Fabric provides additional and

optional prescriptive Service Fabric

programming models like stateful services

and Reliable Actors.

Service Fabric is mature in Windows (years

evolving in Windows), less mature in Linux.

Both Linux and Windows containers are

supported in Service Fabric since 2017.

Azure Service Fabric Mesh | Azure Service Fabric Mesh offers the same reliability, mission-

critical performance and scale as Service Fabric, but also offers a fully managed and serverless

platform. You don’t need to manage a cluster, VMs, storage or networking configuration. You just

focus on your application’s development. Service Fabric Mesh supports both Windows and Linux

containers, allowing you to develop with any programming language and framework of your choice.

Azure Container Apps | Azure Container Apps is a

managed serverless container service for building and deploying modern apps at scale. |

Using container-based orchestrators in Azure

Several cloud vendors offer Docker containers support plus Docker clusters and orchestration support,

including Azure, Amazon EC2 Container Service, and Google Container Engine. Azure provides Docker

https://docs.microsoft.com/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-resource-manager-introduction
https://docs.microsoft.com/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/azure/service-fabric-mesh/service-fabric-mesh-overview
https://azure.microsoft.com/services/container-apps/

29 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

cluster and orchestrator support through Azure Kubernetes Service (AKS), Azure Service Fabric, and

Azure Service Fabric Mesh.

Using Azure Kubernetes Service

A Kubernetes cluster pools several Docker hosts and exposes them as a single virtual Docker host, so

you can deploy multiple containers into the cluster and scale-out with any number of container

instances. The cluster will handle all the complex management plumbing, like scalability, health, and

so forth.

AKS provides a way to simplify the creation, configuration, and management of a cluster of virtual

machines in Azure that are preconfigured to run containerized applications. Using an optimized

configuration of popular open-source scheduling and orchestration tools, AKS enables you to use

your existing skills or draw on a large and growing body of community expertise to deploy and

manage container-based applications on Microsoft Azure.

Azure Kubernetes Service optimizes the configuration of popular Docker clustering open-source tools

and technologies specifically for Azure. You get an open solution that offers portability for both your

containers and your application configuration. You select the size, the number of hosts, and the

orchestrator tools, and AKS handles everything else.

30 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-7. Kubernetes cluster’s simplified structure and topology

Figure 4-7 shows the structure of a Kubernetes cluster where a master node (VM) controls most of the

coordination of the cluster, and you can deploy containers to the rest of the nodes that are managed

as a single pool from an application point of view. This allows you to scale to thousands or even tens

of thousands of containers.

Development environment for Kubernetes

In the development environment that Docker announced in July 2018, Kubernetes can also run in a

single development machine (Windows 10 or macOS) by just installing Docker Desktop. You can later

deploy to the cloud (AKS) for further integration tests, as shown in figure 4-8.

https://www.docker.com/products/docker-desktop

31 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-8. Running Kubernetes in dev machine and the cloud

Get started with Azure Kubernetes Service (AKS)

To begin using AKS, you deploy an AKS cluster from the Azure portal or by using the CLI. For more

information on deploying a Kubernetes cluster to Azure, see Deploy an Azure Kubernetes Service

(AKS) cluster.

There are no fees for any of the software installed by default as part of AKS. All default options are

implemented with open-source software. AKS is available for multiple virtual machines in Azure.

You’re charged only for the compute instances you choose, as well as the other underlying

infrastructure resources consumed, such as storage and networking. There are no incremental charges

for AKS itself.

For further implementation information on deployment to Kubernetes based on kubectl and original

.yaml files, see Deploy to Azure Kubernetes Service (AKS).

Deploy with Helm charts into Kubernetes clusters

When deploying an application to a Kubernetes cluster, you can use the original kubectl.exe CLI tool

using deployment files based on the native format (.yaml files), as already mentioned in the previous

section. However, for more complex Kubernetes applications such as when deploying complex

microservice-based applications, it’s recommended to use Helm.

Helm Charts helps you define, version, install, share, upgrade, or rollback even the most complex

Kubernetes application. Helm is maintained by the Cloud Native Computing Foundation (CNCF) in

collaboration with Microsoft, Google, Bitnami, and the Helm contributor community.

For further implementation information on Helm charts and Kubernetes, see the section called Install

eShopOnContainers using Helm.

https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Deploy-to-Azure-Kubernetes-Service-(AKS)
https://helm.sh/
https://www.cncf.io/
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Deploy-to-Azure-Kubernetes-Service-(AKS)#install-eshoponcontainers-using-helm
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Deploy-to-Azure-Kubernetes-Service-(AKS)#install-eshoponcontainers-using-helm

32 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Additional resources

• Getting started with Azure Kubernetes Service (AKS)

https://learn.microsoft.com/azure/aks/kubernetes-walkthrough-portal

• Kubernetes. The official site.

https://kubernetes.io/

Using Azure Service Fabric

Azure Service Fabric arose from Microsoft’s transition from delivering “box” products, which were

typically monolithic in style, to delivering services. The experience of building and operating large

services at scale, such as Azure SQL Database, Azure Cosmos DB, Azure Service Bus, or Cortana’s

Backend, shaped Service Fabric. The platform evolved over time as more and more services adopted

it. Importantly, Service Fabric had to run not only in Azure but also in standalone Windows Server

deployments.

The aim of Service Fabric is to solve the hard problems of building and running a service and utilizing

infrastructure resources efficiently, so that teams can solve business problems using a microservices

approach.

Service Fabric provides two broad areas to help you build applications that use a microservices

approach:

• A platform that provides system services to deploy, scale, upgrade, detect, and restart failed

services, discover service location, manage state, and monitor health. These system services in

effect enable many of the characteristics of microservices described previously.

• Programming APIs, or frameworks, to help you build applications as microservices: reliable

actors and reliable services. You can choose any code to build your microservice, but these

APIs make the job more straightforward, and they integrate with the platform at a deeper

level. This way you can get health and diagnostics information, or you can take advantage of

reliable state management.

Service Fabric is agnostic with respect to how you build your service, and you can use any technology.

However, it provides built-in programming APIs that make it easier to build microservices.

As shown in Figure 4-10, you can create and run microservices in Service Fabric either as simple

processes or as Docker containers. It’s also possible to mix container-based microservices with

process-based microservices within the same Service Fabric cluster.

https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal
https://kubernetes.io/
https://docs.microsoft.com/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/azure/service-fabric/service-fabric-choose-framework

33 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-10. Deploying microservices as processes or as containers in Azure Service Fabric

In the first image, you see microservices as processes, where each node runs one process for each

microservice. In the second image, you see microservices as containers, where each node runs Docker

with several containers, one container per microservice. Service Fabric clusters based on Linux and

Windows hosts can run Docker Linux containers and Windows Containers, respectively.

For up-to-date information about containers support in Azure Service Fabric, see Service Fabric and

containers.

Service Fabric is a good example of a platform where you can define a different logical architecture

(business microservices or Bounded Contexts) than the physical implementation. For example, if you

implement Stateful Reliable Services in Azure Service Fabric, which are introduced in the next section,

“Stateless versus stateful microservices,” you have a business microservice concept with multiple

physical services.

As shown in Figure 4-10, and thinking from a logical/business microservice perspective, when

implementing a Service Fabric Stateful Reliable Service, you usually will need to implement two tiers

of services. The first is the back-end stateful reliable service, which handles multiple partitions (each

partition is a stateful service). The second is the front-end service, or Gateway service, in charge of

routing and data aggregation across multiple partitions or stateful service instances. That Gateway

service also handles client-side communication with retry loops accessing the back-end service. It’s

called a Gateway service if you implement your custom service, or alternatively you can also use the

out-of-the-box Service Fabric reverse proxy.

https://docs.microsoft.com/azure/service-fabric/service-fabric-containers-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-containers-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-reverseproxy

34 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-11. Business microservice with several stateful service instances and a custom gateway front end

In any case, when you use Service Fabric Stateful Reliable Services, you also have a logical or business

microservice (Bounded Context) that’s composed of multiple physical services. Each of them, the

Gateway service, and Partition service could be implemented as ASP.NET Web API services, as shown

in Figure 4-11. Service Fabric has prescription to support several stateful reliable services in containers.

In Service Fabric, you can group and deploy groups of services as a Service Fabric Application, which is

the unit of packaging and deployment for the orchestrator or cluster. Therefore, the Service Fabric

Application could be mapped to this autonomous business and logical microservice boundary or

Bounded Context, as well, so you could deploy these services autonomously.

Service Fabric and containers

With regard to containers in Service Fabric, you can also deploy services in container images within a

Service Fabric cluster. As Figure 4-12 shows, most of the time there will only be one container per

service.

Figure 4-12. Business microservice with several services (containers) in Service Fabric

https://docs.microsoft.com/azure/service-fabric/service-fabric-application-model

35 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

A Service Fabric application can run several containers accessing an external database and the whole

set would be the logical boundary of a Business Microservice. However, so-called “sidecar” containers

(two containers that must be deployed together as part of a logical service) are also possible in

Service Fabric. The important thing is that a business microservice is the logical boundary around

several cohesive elements. In many cases, it might be a single service with a single data model, but in

some other cases you might have several physical services as well.

Note that you can mix services in processes, and services in containers, in the same Service Fabric

application, as shown in Figure 4-13.

Figure 4-13. Business microservice mapped to a Service Fabric application with containers and stateful services

For more information about container support in Azure Service Fabric, see Service Fabric and

containers.

Stateless versus stateful microservices

As mentioned earlier, each microservice (logical Bounded Context) must own its domain model (data

and logic). In the case of stateless microservices, the databases will be external, employing relational

options like SQL Server, or NoSQL options like Azure Cosmos DB or MongoDB.

But the services themselves can also be stateful in Service Fabric, which means that the data resides

within the microservice. This data might exist not just on the same server, but within the microservice

process, in memory and persisted on hard drives and replicated to other nodes. Figure 4-14 shows the

different approaches.

https://docs.microsoft.com/azure/service-fabric/service-fabric-containers-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-containers-overview

36 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-14. Stateless versus stateful microservices

In stateless services, the state (persistence, database) is kept out of the microservice. In stateful

services, state is kept inside the microservice. A stateless approach is perfectly valid and is easier to

implement than stateful microservices, since the approach is similar to traditional and well-known

patterns. But stateless microservices impose latency between the process and data sources. They also

involve more moving pieces when you’re trying to improve performance with additional cache and

queues. The result is that you can end up with complex architectures that have too many tiers.

In contrast, stateful microservices can excel in advanced scenarios, because there’s no latency between

the domain logic and data. Heavy data processing, gaming back ends, databases as a service, and

other low-latency scenarios all benefit from stateful services, which enable local state for faster access.

Stateless and stateful services are complementary. For instance, as you can see in the right diagram in

Figure 4-14, a stateful service can be split into multiple partitions. To access those partitions, you

might need a stateless service acting as a gateway service that knows how to address each partition

based on partition keys.

Stateful services do have drawbacks. They impose a high complexity level to be scaled out.

Functionality that would usually be implemented by external database systems must be addressed for

tasks such as data replication across stateful microservices and data partitioning. However, this is one

of the areas where an orchestrator like Azure Service Fabric with its stateful reliable services can help

the most—by simplifying the development and lifecycle of stateful microservices using the Reliable

Services API and Reliable Actors.

Other microservice frameworks that allow stateful services, support the Actor pattern, and improve

fault tolerance and latency between business logic and data are Microsoft Orleans, from Microsoft

Research, and Akka.NET. Both frameworks are currently improving their support for Docker.

Remember that Docker containers are themselves stateless. If you want to implement a stateful

service, you need one of the additional prescriptive and higher-level frameworks noted earlier.

Using Azure Service Fabric Mesh

Azure Service Fabric Mesh is a fully managed service that enables developers to build and deploy

mission critical applications without managing any infrastructure. Use Service Fabric Mesh to build

and run secure, distributed microservices applications that scale on demand.

https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-introduction#when-to-use-reliable-services-apis
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-platform-architecture
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-introduction#when-to-use-reliable-services-apis
https://docs.microsoft.com/azure/service-fabric/service-fabric-work-with-reliable-collections
https://docs.microsoft.com/azure/service-fabric/service-fabric-work-with-reliable-collections
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-actors-introduction
https://github.com/dotnet/orleans
https://getakka.net/

37 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

As shown in figure 4-15, applications hosted on Service Fabric Mesh run and scale without you

worrying about the infrastructure powering it.

Figure 4-15. Deploying a microservice/containers application to Service Fabric Mesh

Under the covers, Service Fabric Mesh consists of clusters of thousands of machines. All cluster

operations are hidden from the developer. You simply need to upload your containers and specify

resources you need, availability requirements, and resource limits. Service Fabric Mesh automatically

allocates the infrastructure requested by your application deployment and also handles infrastructure

failures, making sure your applications are highly available. You only need to care about the health

and responsiveness of your application, not the infrastructure.

For further information, see the Service Fabric Mesh documentation.

Choosing orchestrators in Azure

The following table provides guidance on what orchestrator to use depending on workloads and OS

focus.

Figure 4-16. Orchestrator selection in Azure guidance

https://docs.microsoft.com/azure/service-fabric-mesh/

38 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Deploy to Azure Kubernetes Service (AKS)
You can interact with AKS using your preferred client operating system (Windows, macOS, or Linux)

with Azure command-line interface (Azure CLI) installed. For more details, refer Azure CLI

documentation and Installation guide for the available environments.

Create the AKS environment in Azure

There are several ways to create the AKS Environment. It can be done by using Azure CLI commands

or by using the Azure portal.

Here you can explore some examples using the Azure CLI to create the cluster and the Azure portal to

review the results. You also need to have Kubectl and Docker in your development machine.

Create the AKS cluster

Create the AKS cluster using this command (the resource group must exist):

az aks create --resource-group explore-docker-aks-rg --name explore-docker-aks --node-

vm-size Standard_B2s --node-count 1 --generate-ssh-keys --location westeurope

Note

The --node-vm-size and --node-count parameter values are good enough for a sample/dev

application.

After the creation job finishes, you can see:

• The AKS cluster created in the initial resource group

• A new, related resource group, containing the resources related to the AKS cluster, as show in

the following images.

The initial resource group, with the AKS cluster:

https://docs.microsoft.com/cli/azure/?view=azure-cli-latest&preserve-view=false
https://docs.microsoft.com/cli/azure/?view=azure-cli-latest&preserve-view=false
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest&preserve-view=false

39 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-17. AKS Resource Group view from Azure.

The AKS cluster resource group:

Figure 4-18. AKS view from Azure.

Important

In general, you shouldn’t need to modify the resources in the AKS cluster resource group. For

example, the resource group is deleted when you delete the AKS cluster.

You can also view the node created using Azure CLI and Kubectl.

First, getting the credentials:

az aks get-credentials --resource-group explore-docker-aks-rg --name explore-docker-

aks

40 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-19. aks get-credentials command result.

And then, getting nodes from Kubectl:

kubectl get nodes

Figure 4-20. kubectl get nodes command result.

Development environment for Docker apps

Development tools choices: IDE or editor

No matter if you prefer a full and powerful IDE or a lightweight and agile editor, Microsoft has you

covered when it comes to developing Docker applications.

Visual Studio Code and Docker CLI (cross-platform tools for Mac, Linux, and

Windows)

If you prefer a lightweight, cross-platform editor supporting any development language, you can use

Visual Studio Code and Docker CLI. These products provide a simple yet robust experience, which is

critical for streamlining the developer workflow. By installing “Docker for Mac” or “Docker for

Windows” (development environment), Docker developers can use a single Docker CLI to build apps

for both Windows or Linux (runtime environment). Plus, Visual Studio Code supports extensions for

Docker with IntelliSense for Dockerfiles and shortcut-tasks to run Docker commands from the editor.

Note

To download Visual Studio Code, go to https://code.visualstudio.com/download.

To download Docker for Mac and Windows, go to https://www.docker.com/products/docker.

Visual Studio with Docker Tools (Windows development machine)

It’s recommended that you use Visual Studio 2022 or later with the built-in Docker Tools enabled.

With Visual Studio, you can develop, run, and validate your applications directly in the chosen Docker

environment. Press F5 to debug your application (single container or multiple containers) directly in a

Docker host, or press Ctrl+F5 to edit and refresh your app without having to rebuild the container. It’s

the simplest and most powerful choice for Windows developers to create Docker containers for Linux

or Windows.

https://code.visualstudio.com/download
https://www.docker.com/products/docker

41 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Visual Studio for Mac (Mac development machine)

You can use Visual Studio for Mac when developing Docker-based applications. Visual Studio for Mac

offers a richer IDE when compared to Visual Studio Code for Mac.

Language and framework choices

You can develop Docker applications using Microsoft tools with most modern languages. The

following is an initial list, but you’re not limited to it:

• .NET and ASP.NET Core

• Node.js

• Go

• Java

• Ruby

• Python

Basically, you can use any modern language supported by Docker in Linux or Windows.

Inner-loop development workflow for Docker apps
Before triggering the outer-loop workflow spanning the entire DevOps cycle, it all begins on each

developer’s machine, coding the app itself, using their preferred languages or platforms, and testing it

locally (Figure 4-21). But in every case, you’ll have an important point in common, no matter what

language, framework, or platforms you choose. In this specific workflow, you’re always developing and

testing Docker containers in no other environments, but locally.

Figure 4-21. Inner-loop development context

The container or instance of a Docker image will contain these components:

• An operating system selection (for example, a Linux distribution or Windows)

• Files added by the developer (for example, app binaries)

• Configuration (for example, environment settings and dependencies)

• Instructions for what processes to run by Docker

You can set up the inner-loop development workflow that utilizes Docker as the process (described in

the next section). Consider that the initial steps to set up the environment are not included, because

you only need to do it once.

https://visualstudio.microsoft.com/vs/mac/?utm_medium=microsoft&utm_source=learn.microsoft.com&utm_campaign=inline+link

42 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Building a single app within a Docker container using Visual Studio

Code and Docker CLI

Apps are made up from your own services plus additional libraries (dependencies).

Figure 4-22 shows the basic steps that you usually need to carry out when building a Docker app,

followed by detailed descriptions of each step.

Figure 4-22. High-level workflow for the life cycle for Docker containerized applications using Docker CLI

Step 1: Start coding in Visual Studio Code and create your initial app/service

baseline

The way you develop your application is similar to the way you do it without Docker. The difference is

that while developing, you’re deploying and testing your application or services running within Docker

containers placed in your local environment (like a Linux VM or Windows).

Setting up your local environment

With the latest versions of Docker Desktop for Mac and Windows, it’s easier than ever to develop

Docker applications, and the setup is straightforward.

Tip

For instructions on setting up Docker Desktop for Windows, go to https://docs.docker.com/docker-

for-windows/.

For instructions on setting up Docker Desktop for Mac, go to https://docs.docker.com/docker-for-

mac/.

In addition, you’ll need a code editor so that you can actually develop your application while using

Docker CLI.

https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/

43 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Microsoft provides Visual Studio Code, which is a lightweight code editor that’s supported on

Windows, Linux, and macOS, and provides IntelliSense with support for many languages (JavaScript,

.NET, Go, Java, Ruby, Python, and most modern languages), debugging, integration with Git and

extensions support. This editor is a great fit for macOS and Linux developers. In Windows, you also

can use Visual Studio.

Tip

For instructions on installing Visual Studio Code for Windows, Linux, or macOS, go to

https://code.visualstudio.com/docs/setup/setup-overview/.

For instructions on setting up Docker for Mac, go to https://docs.docker.com/docker-for-mac/.

You can work with Docker CLI and write your code using any code editor, but using Visual Studio

Code with the Docker extension makes it easy to author Dockerfile and docker-compose.yml files in

your workspace. You can also run tasks and scripts from the Visual Studio Code IDE to execute Docker

commands using the Docker CLI underneath.

The Docker extension for VS Code provides the following features:

• Automatic Dockerfile and docker-compose.yml file generation

• Syntax highlighting and hover tips for docker-compose.yml and Dockerfile files

• IntelliSense (completions) for Dockerfile and docker-compose.yml files

• Linting (errors and warnings) for Dockerfile files

• Command Palette (F1) integration for the most common Docker commands

• Explorer integration for managing Images and Containers

• Deploy images from DockerHub and Azure Container Registries to Azure App Service

To install the Docker extension, press Ctrl+Shift+P, type ext install, and then run the Install Extension

command to bring up the Marketplace extension list. Next, type docker to filter the results, and then

select the Docker Support extension, as depicted in Figure 4-23.

Figure 4-23. Installing the Docker Extension in Visual Studio Code

https://code.visualstudio.com/docs/languages/overview
https://code.visualstudio.com/Docs/editor/debugging
https://code.visualstudio.com/Docs/editor/versioncontrol
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/setup/setup-overview/
https://docs.docker.com/docker-for-mac/

44 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Step 2: Create a DockerFile related to an existing image (plain OS or dev

environments like .NET, Node.js, and Ruby)

You’ll need a DockerFile per custom image to be built and per container to be deployed. If your app is

made up of single custom service, you’ll need a single DockerFile. But if your app is composed of

multiple services (as in a microservices architecture), you’ll need one Dockerfile per service.

The DockerFile is commonly placed in the root folder of your app or service and contains the required

commands so that Docker knows how to set up and run that app or service. You can create your

DockerFile and add it to your project along with your code (node.js, .NET, etc.), or, if you’re new to the

environment, take a look at the following Tip.

Tip

You can use the Docker extension to guide you when using the Dockerfile and docker-compose.yml

files related to your Docker containers. Eventually, you’ll probably write these kinds of files without

this tool, but using the Docker extension is a good starting point that will accelerate your learning

curve.

In Figure 4-24, you can see the steps to add the docker files to a project by using the Docker

Extension for VS Code:

1. Open the command palette, type “docker” and select “Add Docker Files to Workspace”.

2. Select Application Platform (ASP.NET Core)

3. Select Operating System (Linux)

4. Include optional Docker Compose files

5. Enter ports to publish (80, 443)

6. Select the project

45 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-24. Docker files added using the Add Docker files to Workspace command

When you add a DockerFile, you specify what base Docker image you’ll be using (like using FROM

mcr.microsoft.com/dotnet/aspnet). You’ll usually build your custom image on top of a base image

that you get from any official repository at the Docker Hub registry (like an image for .NET or the one

for Node.js).

Tip

You’ll have to repeat this procedure for every project in your application. However, the extension will

ask to overwrite the generated docker-compose file after the first time. You should reply to not

overwrite it, so the extension creates separate docker-compose files, that you can then merge by

hand, prior to running docker-compose.

Use an existing official Docker image

Using an official repository of a language stack with a version number ensures that the same language

features are available on all machines (including development, testing, and production).

The following is a sample DockerFile for a .NET container:

https://hub.docker.com/
https://hub.docker.com/_/microsoft-dotnet/
https://hub.docker.com/_/node/

46 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

FROM mcr.microsoft.com/dotnet/aspnet:6.0 AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443

FROM mcr.microsoft.com/dotnet/sdk:6.0 AS build
WORKDIR /src
COPY ["src/WebApi/WebApi.csproj", "src/WebApi/"]
RUN dotnet restore "src/WebApi/WebApi.csproj"
COPY . .
WORKDIR "/src/src/WebApi"
RUN dotnet build "WebApi.csproj" -c Release -o /app/build

FROM build AS publish
RUN dotnet publish "WebApi.csproj" -c Release -o /app/publish

FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "WebApi.dll"]

In this case, the image is based on version 6.0 of the official ASP.NET Core Docker image (multi-arch

for Linux and Windows), as per the line FROM mcr.microsoft.com/dotnet/aspnet:6.0. (For more

information about this topic, see the ASP.NET Core Docker Image page and the .NET Docker Image

page).

In the DockerFile, you can also instruct Docker to listen to the TCP port that you’ll use at run time

(such as port 80 or 443).

You can specify additional configuration settings in the Dockerfile, depending on the language and

framework you’re using. For instance, the ENTRYPOINT line with ["dotnet", "WebMvcApplication.dll"]

tells Docker to run a .NET application. If you’re using the SDK and the .NET CLI (dotnet CLI) to build

and run the .NET application, this setting would be different. The key point here is that the

ENTRYPOINT line and other settings depend on the language and platform you choose for your

application.

Tip

For more information about building Docker images for .NET applications, see

https://learn.microsoft.com/dotnet/core/docker/build-container.

To learn more about building your own images, go to

https://docs.docker.com/engine/tutorials/dockerimages/.

Use multi-arch image repositories

A single image name in a repo can contain platform variants, such as a Linux image and a Windows

image. This feature allows vendors like Microsoft (base image creators) to create a single repo to

cover multiple platforms (that is, Linux and Windows). For example, the dotnet/aspnet repository

available in the Docker Hub registry provides support for Linux and Windows Nano Server by using

the same image name.

Pulling the dotnet/aspnet image from a Windows host pulls the Windows variant, whereas pulling the

same image name from a Linux host pulls the Linux variant.

https://hub.docker.com/_/microsoft-dotnet-aspnet/
https://hub.docker.com/_/microsoft-dotnet/
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.docker.com/engine/tutorials/dockerimages/
https://hub.docker.com/_/microsoft-dotnet-aspnet/
https://hub.docker.com/_/microsoft-dotnet-aspnet/

47 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Create your base image from scratch

You can create your own Docker base image from scratch as explained in this article from Docker. This

scenario is probably not the best for you if you’re just starting with Docker, but if you want to set the

specific bits of your own base image, you can do it.

Step 3: Create your custom Docker images embedding your service in it

For each custom service that comprises your app, you’ll need to create a related image. If your app is

made up of a single service or web app, you’ll need just a single image.

Note

When taking into account the “outer-loop DevOps workflow”, the images will be created by an

automated build process whenever you push your source code to a Git repository (Continuous

Integration), so the images will be created in that global environment from your source code.

But before you consider going to that outer-loop route, you need to ensure that the Docker

application is actually working properly so that they don’t push code that might not work properly to

the source control system (Git, etc.).

Therefore, each developer first needs to do the entire inner-loop process to test locally and continue

developing until they want to push a complete feature or change to the source control system.

To create an image in your local environment and using the DockerFile, you can use the docker build

command, as shown in Figure 4-25, because it already tags the image for you and builds the images

for all services in the application with a simple command.

Figure 4-25. Running docker build

Optionally, instead of directly running docker build from the project folder, you first can generate a

deployable folder with the .NET libraries needed by using the run dotnet publish command, and then

run docker build.

This example creates a Docker image with the name webapi:latest (:latest is a tag, like a specific

version). You can take this step for each custom image you need to create for your composed Docker

https://docs.docker.com/engine/userguide/eng-image/baseimages/

48 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

application with several containers. However, we’ll see in the next section that it’s easier to do this

using docker-compose.

You can find the existing images in your local repository (your development machine) by using the

docker images command, as illustrated in Figure 4-26.

Figure 4-26. Viewing existing images using docker images

Step 4: Define your services in docker-compose.yml when building a composed

Docker app with multiple services

With the docker-compose.yml file, you can define a set of related services to be deployed as a

composed application with the deployment commands explained in the next step section.

Create that file in your main or root solution folder; it should have content similar to that shown in this

docker-compose.yml file:

version: "3.4"

services:
 webapi:
 image: webapi
 build:
 context: .
 dockerfile: src/WebApi/Dockerfile
 ports:
 - 51080:80
 depends_on:
 - redis
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=http://+:80

 webapp:
 image: webapp
 build:
 context: .
 dockerfile: src/WebApp/Dockerfile
 ports:
 - 50080:80
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=http://+:80
 - WebApiBaseAddress=http://webapi

 redis:
 image: redis

In this particular case, this file defines three services: the web API service (your custom service), a web

application, and the Redis service (a popular cache service). Each service will be deployed as a

container, so you need to use a concrete Docker image for each. For this particular application:

49 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

• The web API service is built from the DockerFile in the src/WebApi/Dockerfile directory.

• The host port 51080 is forwarded to the exposed port 80 on the webapi container.

• The web API service depends on the Redis service

• The web application accesses the web API service using the internal address: http://webapi.

• The Redis service uses the latest public redis image pulled from the Docker Hub registry.

Redis is a popular cache system for server-side applications.

Step 5: Build and run your Docker app

If your app has only a single container, you just need to run it by deploying it to your Docker Host

(VM or physical server). However, if your app is made up of multiple services, you need to compose it,

too. Let’s see the different options.

Option A: Run a single container or service

You can run the Docker image by using the docker run command, as shown here:

docker run -t -d -p 50080:80 webapp:latest

For this particular deployment, we’ll be redirecting requests sent to port 50080 on the host to the

internal port 80.

Option B: Compose and run a multiple-container application

In most enterprise scenarios, a Docker application will be composed of multiple services. For these

cases, you can run the docker-compose up command (Figure 4-27), which will use the docker-

compose.yml file that you created previously. Running this command builds all custom images and

deploys the composed application with all of its related containers.

https://hub.docker.com/_/redis/
https://redis.io/

50 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-27. Results of running the “docker-compose up” command

After you run docker-compose up, you deploy your application and its related container(s) into your

Docker Host, as illustrated in Figure 4-28, in the VM representation.

Figure 4-28. VM with Docker containers deployed

Step 6: Test your Docker application (locally, in your local CD VM)

This step will vary depending on what your app is doing.

In a simple .NET Web API “Hello World” deployed as a single container or service, you’d just need to

access the service by providing the TCP port specified in the DockerFile.

On the Docker host, open a browser and navigate to that site; you should see your app/service

running, as demonstrated in Figure 4-29.

51 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-29. Testing your Docker application locally by using the browser

Note that it’s using port 50080, but internally it’s being redirected to port 80, because that’s how it

was deployed with docker compose, as explained earlier.

You can test this by using the browser using CURL from the terminal, as depicted in Figure 4-30.

Figure 4-30. Testing a Docker application locally by using CURL

Debugging a container running on Docker

Visual Studio Code supports debugging Docker if you’re using Node.js and other platforms like .NET

containers.

52 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

You also can debug .NET or .NET Framework containers in Docker when using Visual Studio for

Windows or Mac, as described in the next section.

Tip

To learn more about debugging Node.js Docker containers, see

https://learn.microsoft.com/archive/blogs/user_ed/visual-studio-code-new-features-13-big-

debugging-updates-rich-object-hover-conditional-breakpoints-node-js-mono-more.

Use Docker Tools in Visual Studio on Windows
The developer workflow when using the Docker Tools included in Visual Studio 2022 version 17.0 and

later, is similar to using Visual Studio Code and Docker CLI (in fact, it’s based on the same Docker CLI),

but it’s easier to get started, simplifies the process, and provides greater productivity for the build,

run, and compose tasks. It can also run and debug your containers via the usual F5 and Ctrl+F5keys

from Visual Studio. You can even debug a whole solution if its containers are defined in the same

docker-compose.yml file at the solution level.

Configure your local environment

With the latest versions of Docker for Windows, it’s easier than ever to develop Docker applications

because the setup is straightforward, as explained in the following references.

Tip

To learn more about installing Docker for Windows, go to (https://docs.docker.com/docker-for-

windows/).

Docker support in Visual Studio

There are two levels of Docker support you can add to a project. In ASP.NET Core projects, you can

just add a Dockerfile file to the project by enabling Docker support. The next level is container

orchestration support, which adds a Dockerfile to the project (if it doesn’t already exist) and a docker-

compose.yml file at the solution level. Container orchestration support, via Docker Compose, is

available in Visual Studio 2022 versions 17.0. Container orchestration support is an opt-in feature in

Visual Studio 2022 versions 17.0 or later. Visual Studio 2022 also supports Kubernetes/Helm

deployment.

The Add > Docker Support and Add > Container Orchestrator Support commands are located on

the right-click menu (or context menu) of the project node for an ASP.NET Core project in Solution

Explorer, as shown in Figure 4-31:

https://docs.microsoft.com/archive/blogs/user_ed/visual-studio-code-new-features-13-big-debugging-updates-rich-object-hover-conditional-breakpoints-node-js-mono-more
https://docs.microsoft.com/archive/blogs/user_ed/visual-studio-code-new-features-13-big-debugging-updates-rich-object-hover-conditional-breakpoints-node-js-mono-more
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/

53 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-31. Adding Docker support to a Visual Studio project

Add Docker support

Besides the option to add Docker support to an existing application, as shown in the previous section,

you can also enable Docker support during project creation by selecting Enable Docker Support in

the New ASP.NET Core Web Application dialog box that opens after you click OK in the New

Project dialog box, as shown in Figure 4-32.

54 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-32. Enable Docker support during project creation in Visual Studio

When you add or enable Docker support, Visual Studio adds a Dockerfile file to the project, that

includes references to all required project from the solution.

Add container orchestration support

When you want to compose a multi-container solution, add container orchestration support to your

projects. This lets you run and debug a group of containers (a whole solution) at the same time if

they’re defined in the same docker-compose.yml file.

To add container orchestration support, right-click on the project node in Solution Explorer, and

choose Add > Container Orchestration Support. Then choose Docker Compose to manage the

containers.

After you add container orchestration support to your project, you see a Dockerfile added to the

project and a docker-compose folder added to the solution in Solution Explorer, as shown in Figure

4-33:

55 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-33. Docker files in Solution Explorer in Visual Studio

If docker-compose.yml already exists, Visual Studio just adds the required lines of configuration code

to it.

Configure Docker tools

From the main menu, choose Tools > Options, and expand Container Tools > Settings. The

container tools settings appear.

56 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-34. Docker Tools Options

For more detailed configurations refer to Container Tools settings

Tip

For further details on the services implementation and use of Visual Studio Tools for Docker, read the

following articles:

Use the Containers tool window to view container details such as the filesystem, logs, environment,

ports, and more: https://learn.microsoft.com/visualstudio/containers/view-and-diagnose-containers

Debug apps in a local Docker container: https://learn.microsoft.com/visualstudio/containers/edit-and-

refresh

Deploy an ASP.NET container to a container registry using Visual Studio:

https://learn.microsoft.com/visualstudio/containers/hosting-web-apps-in-docker

Using Windows PowerShell commands in a

DockerFile to set up Windows Containers (Docker

standard based)
With Windows Containers, you can convert your existing Windows applications to Docker images and

deploy them with the same tools as the rest of the Docker ecosystem.

https://docs.microsoft.com/visualstudio/containers/container-tools-configure#container-tools-settings
https://docs.microsoft.com/visualstudio/containers/view-and-diagnose-containers
https://docs.microsoft.com/visualstudio/containers/edit-and-refresh
https://docs.microsoft.com/visualstudio/containers/edit-and-refresh
https://docs.microsoft.com/visualstudio/containers/hosting-web-apps-in-docker
https://docs.microsoft.com/virtualization/windowscontainers/about/index

57 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

To use Windows Containers, you just need to write Windows PowerShell commands in the DockerFile,

as demonstrated in the following example:

FROM mcr.microsoft.com/windows/servercore:ltsc2019
LABEL Description="IIS" Vendor="Microsoft" Version="10"
RUN powershell Get-WindowsFeature web-server
RUN powershell Install-windowsfeature web-server
RUN powershell add-windowsfeature web-asp-net45
CMD ["ping", "localhost", "-t"]

In this case, we’re using Windows PowerShell to install a Windows Server Core base image as well

as IIS.

In a similar way, you also could use Windows PowerShell commands to set up additional components

like the traditional ASP.NET 4.x and .NET Framework 4.6 or any other Windows software, as shown

here:

RUN powershell add-windowsfeature web-asp-net45

Build ASP.NET Core applications deployed as Linux

containers into an AKS/Kubernetes orchestrator
Azure Kubernetes Services (AKS) is Azure’s managed Kubernetes orchestrations services that simplify

container deployment and management.

The main features of AKS are:

• An Azure-hosted control plane.

• Automated upgrades.

• Self-healing.

• User-configurable scaling.

• Simpler user experience for both developers and cluster operators.

The following examples explore the creation of an ASP.NET Core 6.0 application that runs on Linux

and deploys to an AKS Cluster in Azure. Development is done using Visual Studio 2022 version 17.0.

Creating the ASP.NET Core Project using Visual Studio 2022

ASP.NET Core is a general-purpose development platform maintained by Microsoft and the .NET

community on GitHub. It’s cross-platform, supporting Windows, macOS and Linux, and can be used in

device, cloud, and embedded/IoT scenarios.

This example uses a couple of simple projects based on Visual Studio templates, so you don’t need

much additional knowledge to create the sample. You only have to create the project using a

standard template that includes all the elements to run a small project with a REST API and a Web

App with Razor pages, using ASP.NET Core 6.0 technology.

For reference, you can download the sample from .NET Application Architecture’s repo explore-

docker.

https://github.com/dotnet-architecture/explore-docker
https://github.com/dotnet-architecture/explore-docker

58 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-35. Creating an ASP.NET Core Web Application in Visual Studio 2022.

To create the sample project in Visual Studio, select File > New > Project, select the Web project

type and then the ASP.NET Core Web Api template. You can also search for the template if you need

it.

Then enter the application name and location as shown in the next image.

59 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-36. Enter the project name and location in Visual Studio 2022.

Verify that you’ve selected ASP.NET Core 6.0 as the framework. .NET 6 is included in the latest release

of Visual Studio 2022 and is automatically installed and configured for you when you install Visual

Studio.

60 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-37. Selecting ASP.NET CORE 6.0 and Web API project type

Notice Docker support is not enabled now. You’ll do that in the next step after the project creation.

You’ll also notice that by default controller option is checked. You can uncheck that if you want to

Create a minimal web API with ASP.NET Core.

To show you can “Dockerize” your project at any time, you’ll add Docker support now. So right-click

on the project node in Solution Explorer and select Add > Docker support on the context menu.

https://docs.microsoft.com/aspnet/core/tutorials/min-web-api?tabs=visual-studio

61 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-38. Adding Docker support to an existing project

To complete adding Docker support, you can choose Windows or Linux. In this case, select Linux.

Figure 4-39. Selecting Linux containers.

62 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

With these simple steps, you have your ASP.NET Core 6.0 application running on a Linux container.

In a similar way, you can also add a very simple WebApp project (Figure 4-40) to consume the web

API endpoint, although the details can be seen in the code repo.

After that, you add orchestrator support for your WebApi project as shown next, in image 4-40.

Figure 4-40. Adding orchestrator support to WebApi project.

When you choose the Docker Compose option, which is fine for local development, Visual Studio

adds the docker-compose project, with the docker-compose files as shown in image 4-41.

https://github.com/dotnet-architecture/explore-docker

63 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-41. Adding orchestrator support to WebApi project.

The initial files added are similar to these ones:

docker-compose.yml

version: "3.4"

services:
 webapi:
 image: ${DOCKER_REGISTRY-}webapi
 build:
 context: .
 dockerfile: WebApi/Dockerfile

 webapp:
 image: ${DOCKER_REGISTRY-}webapp
 build:
 context: .
 dockerfile: WebApp/Dockerfile

docker-compose.override.yml

version: "3.4"

services:
 webapi:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=https://+:443;http://+:80
 ports:
 - "80"
 - "443"
 volumes:
 - ${APPDATA}/Microsoft/UserSecrets:/root/.microsoft/usersecrets:ro
 - ${APPDATA}/ASP.NET/Https:/root/.aspnet/https:ro
 webapp:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=https://+:443;http://+:80
 ports:
 - "80"
 - "443"

64 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

 volumes:
 - ${APPDATA}/Microsoft/UserSecrets:/root/.microsoft/usersecrets:ro
 - ${APPDATA}/ASP.NET/Https:/root/.aspnet/https:ro

To run your app with Docker Compose, you just have to make a few tweaks to docker-

compose.override.yml.

services:
 webapi:
 #...
 ports:
 - "51080:80"
 - "51443:443"
 #...
 webapp:
 environment:
 #...
 - WebApiBaseAddress=http://webapi
 ports:
 - "50080:80"
 - "50443:443"
 #...

Now you can run your application with the F5 key, or by using the Play button, or the Ctrl+F5 key,

selecting the docker-compose project, as shown in image 4-42.

Figure 4-42. Adding orchestrator support to WebApi project.

When running the docker-compose application as explained, you get:

1. The images built and containers created as per the docker-compose file.

2. The browser open in the address configured in the “Properties” dialog for the docker-

compose project.

3. The Container window open (in Visual Studio 2022 version 17.0 and later).

4. Debugger support for all projects in the solution, as shown in the following images.

Browser opened:

65 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-43. Browser window with an application running on multiple containers.

Containers window:

Figure 4-44. Visual Studio “Containers” window

The Containers window lets you view running containers, browse available images, view environment

variables, logs, and port mappings, inspect the filesystem, attach a debugger, or open a terminal

window inside the container environment.

As you can see, the integration between Visual Studio 2022 and Docker is completely oriented to the

developer’s productivity.

Of course, you can also list the images using the docker images command. You should see the webapi

and webapp images with the dev tags created by the automatic deployment of our project with Visual

Studio 2022.

docker images

66 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-45. View of Docker images

Register the Solution in an Azure Container Registry (ACR)

You can upload the images to the Azure Container Registry (ACR), but you could also use Docker Hub

or any other registry, so the images can be deployed to the AKS cluster from that registry.

Create an ACR instance

Run the following command from the az cli:

az acr create --name exploredocker --resource-group explore-docker-aks-rg --sku basic

--admin-enabled

Note

The container registry name (for example, exploredocker) must be unique within Azure and contain 5-

50 alphanumeric characters. For more details, see Create a container registry.

Create the image in Release mode

You’ll now create the image in Release mode (ready for production) by changing to Release, as

shown in Figure 4-46, and running the application as you did before.

Figure 4-46. Selecting Release Mode

If you execute the docker images command, you’ll see both images created, one for debug (dev) and

the other for release (latest) mode.

Create a new Tag for the Image

Each container image needs to be tagged with the loginServer name of the registry. This tag is used

for routing when pushing container images to an image registry.

You can view the loginServer name from the Azure portal, taking the information from the Azure

Container Registry

https://azure.microsoft.com/services/container-registry/
https://docs.microsoft.com/azure/container-registry/container-registry-get-started-azure-cli#create-a-container-registry

67 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-47. View of the name of the Registry

Or by running the following command:

az acr list --resource-group <resource-group-name> --query
"[].{acrLoginServer:loginServer}" --output table

Figure 4-48. Get the name of the registry using az cli

In both cases, you’ll obtain the name. In our example, exploredocker.azurecr.io.

Now you can tag the image, taking the latest image (the Release image), with the command:

docker tag <image-name>:latest <login-server-name>/<image-name>:v1

After running the docker tag command, list the images with the docker images command, and you

should see the image with the new tag.

Figure 4-49. View of tagged images

Push the image into the Azure ACR

Log in to the Azure Container Registry

az acr login --name exploredocker

Push the image into the Azure ACR, using the following command:

docker push <login-server-name>/<image-name>:v1

68 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

This command takes a while uploading the images but gives you feedback in the process. In the

following image, you can see the output from one image completed and another in progress.

Figure 4-50. Console output from the push command.

To deploy your multi-container app into your AKS cluster you need some manifest .yaml files that

have, most of the properties taken from the docker-compose.yml and docker-compose.override.yml

files.

deploy-webapi.yml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: webapi
 labels:
 app: weather-forecast
spec:
 replicas: 1
 selector:
 matchLabels:
 service: webapi
 template:
 metadata:
 labels:
 app: weather-forecast
 service: webapi
 spec:
 containers:
 - name: webapi
 image: exploredocker.azurecr.io/webapi:v1
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 80
 protocol: TCP
 env:
 - name: ASPNETCORE_URLS
 value: http://+:80

69 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

apiVersion: v1
kind: Service
metadata:
 name: webapi
 labels:
 app: weather-forecast
 service: webapi
spec:
 ports:
 - port: 80
 targetPort: 80
 protocol: TCP
 selector:
 service: webapi
deploy-webapp.yml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: webapp
 labels:
 app: weather-forecast
spec:
 replicas: 1
 selector:
 matchLabels:
 service: webapp
 template:
 metadata:
 labels:
 app: weather-forecast
 service: webapp
 spec:
 containers:
 - name: webapp
 image: exploredocker.azurecr.io/webapp:v1
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 80
 protocol: TCP
 env:
 - name: ASPNETCORE_URLS
 value: http://+:80
 - name: WebApiBaseAddress
 value: http://webapi

apiVersion: v1
kind: Service
metadata:
 name: webapp
 labels:
 app: weather-forecast
 service: webapp
spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: 80
 protocol: TCP
 selector:
 service: webapp

70 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Note

The previous .yml files only enable the HTTP ports, using the ASPNETCORE_URLS parameter, to avoid

issues with the missing certificate in the sample app.

Tip

You can see how to create the AKS Cluster for this sample in section Deploy to Azure Kubernetes

Service (AKS) on this guide.

Now you’re almost ready to deploy using kubectl, but first you must get the credentials from the AKS

Cluster with this command:

az aks get-credentials --resource-group explore-docker-aks-rg --name explore-docker-aks

Figure 4-51. Getting credentials from AKS into the kubectl environment.

You also have to allow the AKS cluster to pull images from the ACR, using this command:

az aks update --name explore-docker-aks --resource-group explore-docker-aks-rg --attach-acr
exploredocker

The previous command might take a couple of minutes to complete. Then, use the kubectl apply

command to launch the deployments, and then kubectl get all to list the cluster objects.

kubectl apply -f deploy-webapi.yml
kubectl apply -f deploy-webapp.yml

kubectl get all

71 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-52. Deployment to Kubernetes

You’ll have to wait a while until the load balancer gets the external IP, checking with kubectl get

services, and then the application should be available at that address, as shown in the next image:

72 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-53. Deployment to Kubernetes

When the deployment completes, you can access the Kubernetes Web UI with a local proxy, using an

ssh tunnel.

First you must create a ClusterRoleBinding with the following command:

kubectl create clusterrolebinding kubernetes-dashboard --clusterrole=cluster-admin --
serviceaccount=kube-system:kubernetes-dashboard

And then this command to start the proxy:

az aks browse --resource-group exploredocker-aks-rg --name explore-docker-aks

A browser window should open at http://127.0.0.1:8001 with a view similar to this one:

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

73 CHAPTER 4 | Designing and developing containerized apps using Docker and Microsoft Azure

Figure 4-54. View Kubernetes cluster information

Now you have your ASP.NET Core application, running in Linux containers, and deployed to an AKS

cluster on Azure.

Note

For more information on deployment with Kubernetes see:

https://kubernetes.io/docs/reference/kubectl/cheatsheet/

https://kubernetes.io/docs/reference/kubectl/cheatsheet/

74 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

CHAPTER 5

Docker application

DevOps workflow with

Microsoft tools

Microsoft Visual Studio, Azure DevOps Services and/or GitHub, Team Foundation Server, and Azure

Monitor provide a comprehensive ecosystem for development and IT operations that give your team the

tools to manage projects and rapidly build, test, and deploy containerized applications.

Teams can choose which tools and platforms they want to use for end to end DevOps. With Visual

Studio and Azure DevOps Services in the cloud, along with Team Foundation Server on-premises,

development teams can productively build, test, and release containerized applications that target

either Windows or Linux. Alternatively, teams can also use Visual Studio Code and GitHub. Teams can

even use combinations: for example, storing source code in GitHub and using Azure Boards for work

item tracking and Azure Pipelines for CI/CD.

Microsoft tools can automate the pipeline for specific implementations of containerized

applications—Docker, .NET, or any combination with other platforms—from global builds and

Continuous Integration (CI) and tests with Azure DevOps Services, Team Foundation Server or GitHub,

to Continuous Deployment (CD) to Docker environments (Development, Staging, Production), and to

transmit analytics information about the services to the development team through Azure Monitor.

Every code commit can initiate a build (CI) and automatically deploy the services to specific

containerized environments (CD).

Developers and testers can easily and quickly provision production-like development and test

environments based on Docker by using templates in Microsoft Azure.

The complexity of containerized application development increases steadily depending on the

business complexity and scalability needs. A good example of this complexity are applications based

on microservices architectures. To succeed in such an environment, your project must automate the

entire life cycle—not only the build and deployment, but it also must manage versions along with

the collection of telemetry. Azure DevOps Services, GitHub and Azure offer the following capabilities:

• Azure DevOps Services/Team Foundation Server source code management (based on Git or

Team Foundation Version Control), Agile planning (Agile, Scrum, and CMMI are supported),

CI, release management, and other tools for Agile teams.

75 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

• Azure DevOps Services and Team Foundation Server include a powerful and growing

ecosystem of first and third-party extensions with which you easily can construct a CI, build,

test, delivery, and release management pipeline for microservices.

• GitHub or GitHub Enterprise Server offer similar capabilities, with source control based on Git,

Projects and Issues for project tracking, GitHub Actions for automating workflows including

CI/CD, and GitHub Advanced Security for dependency, secret and vulnerability scanning.

• Run automated tests as part of your build pipeline in Azure DevOps Services or through

GitHub Actions

• Azure DevOps Services/GitHub can tighten the DevOps life cycle with delivery to multiple

environments, not just for production environments, but also for testing, including A/B

experimentation, canary releases, and so on.

• Organizations easily can provision Docker containers from private images stored in Azure

Container Registry along with any dependency on Azure components (Data, PaaS, etc.) using

Azure Resource Manager templates with tools they’re already comfortable with.

Steps in the outer-loop DevOps workflow for a

Docker application
Figure 5-1 presents an end-to-end depiction of the steps comprising the DevOps outer-loop

workflow. It shows the “outer loop” of DevOps. When code is pushed to the repo, a CI pipeline is

started, then begins the CD pipeline, where the application gets deployed. Metrics collected from

deployed applications are fed back into the development workload, where the “inner loop” occurs, so

development teams have actual data to respond to user and business needs.

Figure 5-1. DevOps outer-loop workflow for Docker applications with Microsoft tools

Now, let’s examine each of these steps in greater detail.

https://martinfowler.com/bliki/CanaryRelease.html

76 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

Step 1: Inner-loop development workflow

This step is explained in detail in Chapter 4, but, to recap, here is where the outer-loop begins, the

moment at which a developer pushes code to the source control management system (like Git)

initiating CI pipeline actions.

Step 2: Source-Code Control integration and management with Azure

DevOps Services and Git

At this step, you need to have a version-control system to gather a consolidated version of all the

code coming from the different developers in the team.

Even though source-code control (SCC) and source-code management might seem second-nature to

most developers, when creating Docker applications in a DevOps life cycle, it’s critical to emphasize

that you must not submit the Docker images with the application directly to the global Docker

Registry (like Azure Container Registry or Docker Hub) from the developer’s machine. On the contrary,

the Docker images to be released and deployed to production environments must be created solely

on the source code that’s being integrated in your global build or CI pipeline based on your source-

code repository (like Git).

The local images, generated by developers, should just be used by them when testing within their

own machines. That’s why it’s critical to have the DevOps pipeline activated from the SCC code.

Azure DevOps Services and Team Foundation Server support Git and Team Foundation Version

Control. You can choose between them and use it for an end-to-end Microsoft experience. However,

you can also manage your code in external repositories (like GitHub, on-premises Git repositories, or

Subversion) and still be able to connect to it and get the code as the starting point for your DevOps CI

pipeline. You can also use GitHub Actions for CI/CD pipelines.

Step 3: Build, CI, Integrate, and Test with Azure DevOps

Services/GitHub and Docker

CI has emerged as a standard for modern software testing and delivery. The Docker solution

maintains a clear separation of concerns between the development and operations teams. The

immutability of Docker images ensures a repeatable deployment between what’s developed, tested

through CI, and run in production. Docker Engine deployed across the developer laptops and test

infrastructure makes the containers portable across environments.

At this point, after you have a version-control system with the correct code submitted, you need a

build service to pick up the code and run the global build and tests.

The internal workflow for this step (CI, build, test) is about the construction of a CI pipeline consisting

of your code repository (Git, etc.), your build server (Azure DevOps Services/GitHub), Docker Engine,

and a Docker Registry.

You can use Azure DevOps Services as the foundation for building your applications and setting your

CI pipeline, and for publishing the built “artifacts” to an “artifacts repository,” which is explained in the

next step. Alternatively, you can use GitHub to implement the same workflow.

77 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

When using Docker for the deployment, the “final artifacts” to be deployed are Docker images with

your application or services embedded within them. Those images are pushed or published to a

Docker Registry (a private repository like the ones you can have in Azure Container Registry, or a

public one like Docker Hub Registry or GitHub Container Registry, which is commonly used for official

base images).

Here is the basic concept: The CI pipeline will be kicked-off by a commit to an SCC repository like Git.

The commit will cause Azure DevOps Services/GitHub to run a build job within a Docker container

and, upon successful completion of that job, push a Docker image to the Docker Registry, as

illustrated in Figure 5-2. The first part of the outer loop involves steps 1 to 3, from code, run, debug

and validate, then the code repo up to the build and test CI step.

Figure 5-2. The steps involved in CI

Here are the basic CI workflow steps with Docker and Azure DevOps Services:

78 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

1. The developer pushes a commit to an SCC repository (Git/Azure DevOps Services, GitHub,

etc.).

2. If you’re using Azure DevOps Services or Git, CI is built in, which means that it’s as simple as

selecting a check box in Azure DevOps Services. If you’re using an external SCC (like GitHub),

a webhook will notify Azure DevOps Services of the update or push to Git/GitHub.

3. Azure DevOps Services pulls the SCC repository, including the Dockerfile describing the

image, as well as the application and test code.

4. Azure DevOps Services builds a Docker image and labels it with a build number.

5. Azure DevOps Services instantiates the Docker container within the provisioned Docker Host,

and runs the appropriate tests.

6. If the tests are successful, the image is first relabeled to a meaningful name so that you know

it’s a “blessed build” (like “/1.0.0” or any other label), and then pushed up to your Docker

Registry (Docker Hub, Azure Container Registry, DTR, etc.)

Here are the basic CI workflow steps with Docker and GitHub:

1. The developer pushes a commit to a GitHub repo.

2. CI is built in, so Actions will trigger base on the event filters.

3. GitHub pulls the SCC repository, including the Dockerfile describing the image, as well as the

application and test code.

4. GitHub builds a Docker image and labels it with a build number.

5. GitHub instantiates the Docker container within the provisioned Docker Host, and runs the

appropriate tests.

6. If the tests are successful, the image is first relabeled to a meaningful name so that you know

it’s a “blessed build” (like “/1.0.0” or any other label), and then pushed up to your Docker

Registry (Docker Hub, Azure Container Registry, DTR, etc.)

Implement a CI pipeline with Azure DevOps Services and the Docker extension for

Azure DevOps Services

Visual Studio Azure DevOps Services contains Build & Release Templates that you can use in your

CI/CD pipeline with which you can build Docker images, push Docker images to an authenticated

Docker registry, run Docker images, or run other operations offered by the Docker CLI. It also adds a

Docker Compose task that you can use to build, push, and run multi-container Docker applications, or

run other operations offered by the Docker Compose CLI, as shown in Figure 5-3.

79 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

Figure 5-3. The Docker CI pipeline in Azure DevOps Services including Build & Release Templates and associated tasks.

You can use these templates and tasks to construct your CI/CD artifacts to Build / Test and Deploy in

Azure Service Fabric, Azure Kubernetes Service, and similar offerings.

With these Visual Studio Team Services tasks, a build Linux-Docker Host/VM provisioned in Azure and

your preferred Docker registry (Azure Container Registry, Docker Hub, private Docker DTR, or any

other Docker registry) you can assemble your Docker CI pipeline in a very consistent way.

Requirements:

• Azure DevOps Services, or for on-premises installations, Team Foundation Server 2015

Update 3 or later.

• An Azure DevOps Services agent that has the Docker binaries.

 An easy way to create one of these agents is to use Docker to run a container based on the

Azure DevOps Services agent Docker image.

Tip

To read more about assembling an Azure DevOps Services Docker CI pipeline and view the

walkthroughs, visit these sites:

• Running a Visual Studio Team Services (Now Azure DevOps Services) agent as a Docker

container:

https://hub.docker.com/_/microsoft-azure-pipelines-vsts-agent

https://hub.docker.com/_/microsoft-azure-pipelines-vsts-agent

80 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

• Building .NET Linux Docker images with Azure DevOps Services:

https://learn.microsoft.com/archive/blogs/stevelasker/building-net-core-linux-docker-

images-with-visual-studio-team-services

• Building a Linux-based Visual Studio Team Service build machine with Docker support:

https://www.donovanbrown.com/post/Building-a-Linux-Based-Visual-Studio-Team-Service-

Build-Machine-with-Docker-Support

Implement a CI pipeline with GitHub Actions

GitHub Actions allow you to create automation scripts that can build Docker images, push Docker

images to an authenticated Docker registry, run Docker images, or run other operations offered by

the Docker CLI.

You can use public Actions (such as Azure Login) and run (shell) commands to construct your CI/CD

artifacts to Build / Test and Deploy in Azure Service Fabric, Azure Kubernetes Service, and similar

offerings.

With these Actions, a build Linux-Docker Host/VM provisioned in Azure and your preferred Docker

registry (Azure Container Registry, Docker Hub, private Docker DTR, or any other Docker registry) you

can assemble your Docker CI pipeline in a very consistent way.

Integrate, test, and validate multi-container Docker applications

Typically, most Docker applications are composed of multiple containers rather than a single

container. A good example is a microservices-oriented application for which you would have one

container per microservice. But, even without strictly following the microservices approach patterns,

it’s probable that your Docker application would be composed of multiple containers or services.

Therefore, after building the application containers in the CI pipeline, you also need to deploy,

integrate, and test the application as a whole with all of its containers within an integration Docker

host or even into a test cluster to which your containers are distributed.

If you’re using a single host, you can use Docker commands such as docker-compose to build and

deploy related containers to test and validate the Docker environment in a single VM. But, if you’re

working with an orchestrator cluster like DC/OS, Kubernetes, or Docker Swarm, you need to deploy

your containers through a different mechanism or orchestrator, depending on your selected

cluster/scheduler.

The following are several types of tests that you can run against Docker containers:

• Unit tests for Docker containers

• Testing groups of interrelated applications or microservices

• Test in production and “canary” releases

The important point is that when running integration and functional tests, you must run those tests

from outside of the containers. Tests are not contained or run in the containers you’re deploying,

because the containers are based on static images that should be exactly like the ones you’ll be

deploying to production.

https://docs.microsoft.com/archive/blogs/stevelasker/building-net-core-linux-docker-images-with-visual-studio-team-services
https://docs.microsoft.com/archive/blogs/stevelasker/building-net-core-linux-docker-images-with-visual-studio-team-services
https://www.donovanbrown.com/post/Building-a-Linux-Based-Visual-Studio-Team-Service-Build-Machine-with-Docker-Support
https://www.donovanbrown.com/post/Building-a-Linux-Based-Visual-Studio-Team-Service-Build-Machine-with-Docker-Support
https://github.com/marketplace/actions/azure-login

81 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

A practical option when testing more advanced scenarios, like including several clusters (test cluster,

staging cluster, and production cluster) is to publish the images to a registry, so it can be tested in

various clusters.

Push the custom application Docker image into your global Docker Registry

After the Docker images have been tested and validated, you’ll want to tag and publish them to your

Docker registry. The Docker registry is a critical piece in the Docker application life cycle because it’s

the central place where you store your custom test (also known as “blessed images”) to be deployed

into QA and production environments.

Similar to how the application code stored in your SCC repository (Git, etc.) is your “source of truth,”

the Docker registry is your “source of truth” for your binary application or bits to be deployed to the

QA or production environments.

Typically, you might want to have your private repositories for your custom images either in a private

repository in Azure Container Registry or in an on-premises registry like Docker Trusted Registry, or in

a public-cloud registry with restricted access (like Docker Hub), although in this last case if your code

is not open source, you must trust the vendor’s security. Either way, the method you use is similar and

is based on the docker push command, as shown in Figure 5-4.

82 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

Figure 5-4. Publishing custom images to Docker Registry

83 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

In step 3, for building integration and testing (CI) you might publish the resulting docker images to a

private or public registry. There are multiple offerings of Docker registries from cloud vendors like

Azure Container Registry, Amazon Web Services Container Registry, Google Container Registry,

GitHub Container Registry, Quay Registry, and so on.

Using the Docker tasks, you can push a set of service images defined by a docker-compose.yml file,

with multiple tags, to an authenticated Docker registry (like Azure Container Registry), as shown in

Figure 5-5.

Figure 5-5. Using Azure DevOps Services to publishing custom images to a Docker Registry

Tip

For more information about Azure Container Registry, see https://aka.ms/azurecontainerregistry.

Step 4: CD, Deploy

The immutability of Docker images ensures a repeatable deployment with what’s developed, tested

through CI, and run in production. After you have the application Docker images published in your

Docker registry (either private or public), you can deploy them to the several environments that you

might have (production, QA, staging, etc.) from your CD pipeline by using Azure DevOps Services

pipeline tasks, Azure DevOps Services Release Management or GitHub Actions.

https://aka.ms/azurecontainerregistry

84 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

However, at this point it depends on what kind of Docker application you’re deploying. Deploying a

simple application (from a composition and deployment point of view) like a monolithic application

comprising a few containers or services and deployed to a few servers or VMs is different from

deploying a more complex application like a microservices-oriented application with hyperscale

capabilities. These two scenarios are explained in the following sections.

Deploying composed Docker applications to multiple Docker environments

Let’s look first at the less-complex scenario: deploying to simple Docker hosts (VMs or servers) in a

single environment or multiple environments (QA, staging, and production). In this scenario, internally

your CD pipeline can use docker-compose (from your Azure DevOps Services deployment tasks) to

deploy the Docker applications with its related set of containers or services, as illustrated in Figure 5-6.

Figure 5-6. Deploying application containers to simple Docker host environments registry

Figure 5-7 highlights how you can connect your build CI to QA/test environments via Azure DevOps

Services by clicking Docker Compose in the Add Task dialog box. However, when deploying to staging

or production environments, you would usually use Release Management features handling multiple

environments (like QA, staging, and production). If you’re deploying to single Docker hosts, it is using

the Azure DevOps Services “Docker Compose” task (which is invoking the docker-compose up

command under the hood). If you’re deploying to Azure Kubernetes Service (AKS), it uses the Docker

85 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

Deployment task, as explained in the section that follows. Similar steps can be built for deployment

using GitHub Actions.

Figure 5-7. Adding a Docker Compose task in an Azure DevOps Services pipeline or GitHub workflow

When you create a release in Azure DevOps Services, it takes a set of input artifacts. These artifacts are

intended to be immutable for the lifetime of the release, across all environments. When you introduce

containers, the input artifacts identify images in a registry to deploy. Depending on how these images

are identified, they are not guaranteed to remain the same throughout the duration of the release, the

most obvious case being when you reference myimage:latest from a docker-compose file.

The Azure DevOps Services templates give you the ability to generate build artifacts that contain

specific registry image digests that are guaranteed to uniquely identify the same image binary. These

are what you really want to use as input to a release. You can invoke docker-compose in a run step

inside GitHub Actions to accomplish the same goal.

Managing releases to Docker environments by using Azure DevOps Services

Release Management or GitHub Actions

Through the Azure DevOps Services templates, you can build a new image, publish it to a Docker

registry, run it on Linux or Windows hosts, and use commands such as docker-compose to deploy

multiple containers as an entire application, all through the Azure DevOps Services Release

Management capabilities intended for multiple environments, as shown in Figure 5-8.

86 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

Figure 5-8. Configuring Azure DevOps Services Docker Compose tasks from Azure DevOps Services Release

Management

However, keep in mind that the scenario shown in Figure 5-6 and implemented in Figure 5-8 is a

simple one (it’s deploying to single Docker hosts and VMs, and there will be a single container or

instance per image) and probably should be used only for development or test scenarios. In most

enterprise production scenarios, you would want to have High Availability (HA) and easy-to-manage

scalability by load balancing across multiple nodes, servers, and VMs, plus “intelligent failovers” so if a

server or node fails, its services and containers will be moved to another host server or VM. In that

case, you need more advanced technologies such as container clusters, orchestrators, and schedulers.

Thus, the way to deploy to those clusters is by handling the advanced scenarios explained in the next

section.

GitHub Actions can be used in the same manner, including the use of environments for approvals.

Deploying Docker applications to Docker clusters

The nature of distributed applications requires compute resources that are also distributed. To have

production-scale capabilities, you need to have clustering capabilities that provide high scalability and

high availability based on pooled resources.

You could deploy containers manually to those clusters from a CLI tool or a web UI, but you should

reserve that kind of manual work to spot deployment testing or management purposes like scaling-

out or monitoring.

From a CD point of view, you can use Azure DevOps Services or GitHub Actions to run specially made

deployment tasks from your environments that will deploy your containerized applications to

distributed clusters in Container Service, as illustrated in Figure 5-9.

https://docs.github.com/actions/reference/environments

87 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

Figure 5-9. Deploying distributed applications to Container Service

Initially, when deploying to certain clusters or orchestrators, you would traditionally use specific

deployment scripts and mechanisms per each orchestrator (that is, Kubernetes and Service Fabric

have different deployment mechanisms) instead of the simpler and easy-to-use docker-compose tool

based on the docker-compose.yml definition file. However, thanks to the Azure DevOps Services

Docker Deploy task, shown in Figure 5-10, now you can also deploy to the supported orchestrators by

just using your familiar docker-compose.yml file because the tool performs that “translation” for you

(from your docker-compose.yml file to the format needed by the orchestrator).

88 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

Figure 5-10. Adding the Deploy to Kubernetes task to your Environment

Figure 5-11 demonstrates how you can edit the Deploy to Kubernetes task with the sections available

for configuration. This is the task that will retrieve your ready-to-use custom Docker images to be

deployed as containers in the cluster.

Figure 5-11. Docker Deploy task definition deploying to ACS DC/OS

89 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

Tip

To read more about the CD pipeline with Azure DevOps Services and Docker, visit

https://azure.microsoft.com/services/devops/pipelines

Tip

To see GitHub Actions workflows for CI, visit https://github.com/dotnet-

architecture/eShopOnContainers/wiki/GitHub-Actions. For a walkthrough of GitHub Actions

performing deployment to an Azure Kubernetes environment, visit https://github.com/dotnet-

architecture/eShopOnContainers/wiki/Deployment-With-GitHub-Actions.

Step 5: Run and manage

Because running and managing applications at enterprise-production level is a major subject in and of

itself, and due to the type of operations and people working at that level (IT operations) as well as the

large scope of this area, the entire next chapter is devoted to explaining it.

Step 6: Monitor and diagnose

This topic also is covered in the next chapter as part of the tasks that IT performs in production

systems; however, is important to highlight that the insights obtained in this step must feed back to

the development team so that the application is constantly improved. From that point of view, it’s also

part of DevOps, although the tasks and operations are commonly performed by IT.

Only when monitoring and diagnostics are 100% within the realm of DevOps are the monitoring

processes and analytics performed by the development team against testing or beta environments.

This is done either by performing load testing or by monitoring beta or QA environments, where beta

testers are trying the new versions.

Create CI/CD pipelines in Azure DevOps Services for

a .NET application on Containers and deploying to a

Kubernetes cluster
In Figure 5-12 you can see the end-to-end DevOps scenario covering the code management, code

compilation, Docker images build, Docker images push to a Docker registry and finally the

deployment to a Kubernetes cluster in Azure.

https://azure.microsoft.com/services/devops/pipelines
https://github.com/dotnet-architecture/eShopOnContainers/wiki/GitHub-Actions
https://github.com/dotnet-architecture/eShopOnContainers/wiki/GitHub-Actions
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Deployment-With-GitHub-Actions
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Deployment-With-GitHub-Actions

90 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

Figure 5-12. CI/CD scenario creating Docker images and deploying to a Kubernetes cluster in Azure

It is important to highlight that the two pipelines, build/CI, and release/CD, are connected through the

Docker Registry (such as Docker Hub or Azure Container Registry). The Docker registry is one of the

main differences compared to a traditional CI/CD process without Docker.

As shown in Figure 5-13, the first phase is the build/CI pipeline. In Azure DevOps Services you can

create build/CI pipelines that will compile the code, create the Docker images, and push them to a

Docker Registry like Docker Hub or Azure Container Registry.

91 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

Figure 5-13. Build/CI pipeline in Azure DevOps building Docker images and pushing images to a Docker registry

The second phase is to create a deployment/release pipeline. In Azure DevOps Services, you can easily

create a deployment pipeline targeting a Kubernetes cluster by using the Kubernetes tasks for Azure

DevOps Services, as shown in Figure 5-14.

Figure 5-14. Release/CD pipeline in Azure DevOps Services deploying to a Kubernetes cluster

[!Walkthrough] Deploying eShopModernized to Kubernetes:

92 CHAPTER 5 | Docker application DevOps workflow with Microsoft tools

For a detailed walkthrough of Azure DevOps CI/CD pipelines deploying to Kubernetes, see this post:

https://github.com/dotnet-architecture/eShopModernizing/wiki/04.-How-to-deploy-your-Windows-

Containers-based-apps-into-Kubernetes-in-Azure-Container-Service-(Including-CI-CD)

https://github.com/dotnet-architecture/eShopModernizing/wiki/04.-How-to-deploy-your-Windows-Containers-based-apps-into-Kubernetes-in-Azure-Container-Service-(Including-CI-CD)
https://github.com/dotnet-architecture/eShopModernizing/wiki/04.-How-to-deploy-your-Windows-Containers-based-apps-into-Kubernetes-in-Azure-Container-Service-(Including-CI-CD)

93 CHAPTER 6 | Run, manage, and monitor Docker production environments

CHAPTER 6

Run, manage, and monitor

Docker production

environments

Vision: Enterprise applications need to run with high availability and high scalability; IT operations

need to be able to manage and monitor the environments and the applications themselves.

This last pillar in the containerized Docker applications life cycle is centered on how you can run,

manage, and monitor your applications in scalable, high availability (HA) production environments.

The way you run your containerized applications in production (infrastructure architecture and

platform technologies) is very much related and based on the chosen architecture and development

platforms discussed in Chapter 1 of this e-book.

This chapter examines specific products and technologies from Microsoft and other vendors that you

can use to effectively run scalable, HA distributed applications plus how you can manage and monitor

them from the IT perspective.

Run composed and microservices-based

applications in production environments
Applications composed by multiple microservices do need to be deployed into orchestrator clusters in

order to simplify the complexity of deployment and make it viable from an IT point of view. Without

an orchestrator cluster, it would be difficult to deploy and scale out a complex microservices

application.

Introduction to orchestrators, schedulers, and container clusters

Earlier in this e-book, clusters and schedulers were introduced as part of the discussion on software

architecture and development. Kubernetes and Service Fabric are examples of Docker clusters. Both of

these orchestrators can run as a part of the infrastructure provided by Microsoft Azure Kubernetes

Service.

94 CHAPTER 6 | Run, manage, and monitor Docker production environments

When applications are scaled-out across multiple host systems, the ability to manage each host

system and abstract away the complexity of the underlying platform becomes attractive. That’s

precisely what orchestrators and schedulers provide. Let’s take a brief look at them here:

• Schedulers. “Scheduling” refers to the ability for an administrator to load a service file onto

a host system that establishes how to run a specific container. Launching containers in a

Docker cluster tends to be known as scheduling. Although scheduling refers to the specific act

of loading the service definition, in a more general sense, schedulers are responsible for

hooking into a host’s init system to manage services in whatever capacity needed.

 A cluster scheduler has multiple goals: using the cluster’s resources efficiently, working with

user-supplied placement constraints, scheduling applications rapidly to not leave them in a

pending state, having a degree of “fairness,” being robust to errors, and always be available.

• Orchestrators. Platforms extend life-cycle management capabilities to complex, multi-

container workloads deployed on a cluster of hosts. By abstracting the host infrastructure,

orchestration tools give users a way to treat the entire cluster as a single deployment target.

 The process of orchestration involves tooling and a platform that can automate all aspects of

application management from initial placement or deployment per container; moving

containers to different hosts depending on its host’s health or performance; versioning and

rolling updates and health monitoring functions that support scaling and failover; and many

more.

 Orchestration is a broad term that refers to container scheduling, cluster management, and

possibly the provisioning of additional hosts.

The capabilities provided by orchestrators and schedulers are complex to develop and create from

scratch, therefore you usually would want to use orchestration solutions offered by vendors.

Manage production Docker environments
Cluster management and orchestration is the process of controlling a group of hosts. This can involve

adding and removing hosts from a cluster, getting information about the current state of hosts and

containers, and starting and stopping processes. Cluster management and orchestration are closely

tied to scheduling because the scheduler must have access to each host in the cluster in order to

schedule services. For this reason, the same tool is often used for both purposes.

Container Service and management tools

Container Service provides rapid deployment of popular open-source container clustering and

orchestration solutions. It uses Docker images to ensure that your application containers are fully

portable. By using Container Service, you can deploy DC/OS (powered by Mesosphere and Apache

Mesos) and Docker Swarm clusters with Azure Resource Manager templates or the Azure portal to

ensure that you can scale these applications to thousands—even tens of thousands—of containers.

You deploy these clusters by using Azure Virtual Machine Scale Sets, and the clusters take advantage

of Azure networking and storage offerings. To access Container Service, you need an Azure

95 CHAPTER 6 | Run, manage, and monitor Docker production environments

subscription. With Container Service, you can take advantage of the enterprise-grade features of

Azure while still maintaining application portability, including at the orchestration layers.

Table 6-1 lists common management tools related to their orchestrators, schedulers, and clustering

platform.

Table 6-1. Docker management tools

Management tools Description Related orchestrators

Azure Monitor for Containers Azure dedicated

Kubernetes

management tool

Azure Kubernetes Services (AKS)

Kubernetes Web UI

(dashboard)

Kubernetes

management tool,

can monitor and

manage local

Kubernetes cluster

Azure Kubernetes Service (AKS)

Local Kubernetes

Azure portal for Service Fabric

Azure Service Fabric Explorer

Online and desktop

version for managing

Service Fabric

clusters, on Azure, on

premises, local

development, and

other clouds

Azure Service Fabric

Container Monitoring (Azure

Monitor)

General container

management y

monitoring solution.

Can manage

Kubernetes clusters

through Azure

Monitor for

Containers.

Azure Service Fabric

Azure Kubernetes Service (AKS)

Mesosphere DC/OS and others.

Azure Service Fabric

Another choice for cluster-deployment and management is Azure Service Fabric. Service Fabric is a

Microsoft microservices platform that includes container orchestration as well as developer

programming models to build highly scalable microservices applications. Service Fabric supports

Docker in Linux and Windows Containers and can run in Windows and Linux servers.

The following are Service Fabric management tools:

• Azure portal for Service Fabric cluster-related operations (create/update/delete) a cluster or

configure its infrastructure (VMs, load balancer, networking, etc.)

• Azure Service Fabric Explorer is a specialized web UI and desktop multi-platform tool that

provides insights and certain operations on the Service Fabric cluster, from the nodes/VMs

point of view and from the application and services point of view.

https://docs.microsoft.com/azure/monitoring/monitoring-container-insights-overview
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-creation-via-portal
https://docs.microsoft.com/azure/service-fabric/service-fabric-visualizing-your-cluster
https://docs.microsoft.com/azure/azure-monitor/insights/containers
https://docs.microsoft.com/azure/azure-monitor/insights/containers
https://docs.microsoft.com/azure/monitoring/monitoring-container-insights-overview
https://docs.microsoft.com/azure/monitoring/monitoring-container-insights-overview
https://docs.microsoft.com/azure/monitoring/monitoring-container-insights-overview
https://azure.microsoft.com/services/service-fabric/
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-creation-via-portal
https://docs.microsoft.com/azure/service-fabric/service-fabric-visualizing-your-cluster

96 CHAPTER 6 | Run, manage, and monitor Docker production environments

Monitor containerized application services
It’s critical for applications split into multiple containers and microservices to have a way to monitor

and analyze the behavior of the whole application.

Azure Monitor

Azure Monitor is an extensible analytics service that monitors your live application. It helps you to

detect and diagnose performance issues and to understand what users actually do with your app. It’s

designed for developers, with the intent of helping you to continuously improve the performance and

usability of your services or applications. Azure Monitor works with both web/services and standalone

apps on a wide variety of platforms like .NET, Java, Node.js and many other platforms, hosted on-

premises or in the cloud.

Additional resources

• Overview of Azure Monitor

https://learn.microsoft.com/azure/azure-monitor/overview

• What is Application Insights?

https://learn.microsoft.com/azure/azure-monitor/app/app-insights-overview

• What is Azure Monitor Metrics?

https://learn.microsoft.com/azure/azure-monitor/platform/data-platform-metrics

• Container Monitoring solution in Azure Monitor

https://learn.microsoft.com/azure/azure-monitor/insights/containers

Security and backup services

There are many support chores with lots of details that you have to handle to ensure your applications

and infrastructure are in top notch condition to support business needs, and the situation becomes

more complicated in the microservices realm, so you need a way to have both high-level and detailed

views when you need to take action.

Azure has the tools to manage and provide a unified view of four critical aspects of both your cloud

and on-premises resources:

• Security. With Azure Security Center.

– Get full visibility and control over the security of your virtual machines, apps, and

workloads.

– Centralize the management of your security policies and integrate existing processes

and tools.

– Detect real threats with advanced analytics.

• Backup. With Azure Backup.

– Avoid costly business disruptions, meet compliance goals, and protect your data

against ransomware and human errors.

– Keep your backup data encrypted in transit and at rest.

https://azure.microsoft.com/services/monitor/
https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/azure/azure-monitor/platform/data-platform-metrics
https://docs.microsoft.com/azure/azure-monitor/insights/containers
https://azure.microsoft.com/services/security-center/
https://azure.microsoft.com/services/backup/

97 CHAPTER 6 | Run, manage, and monitor Docker production environments

– Ensure access based on multifactor authentication to prevent unauthorized use.

• On-premises resources. With hybrid cloud solutions.

https://azure.microsoft.com/solutions/hybrid-cloud-app/

98 CHAPTER 7 | Containerized Docker Application Lifecycle key takeaways

CHAPTER 7

Containerized Docker

Application Lifecycle key

takeaways

• Container-based solutions provide important cost-saving benefits because containers solve

deployment problems caused by dependency failures in production environments, thereby

improving DevOps and production operations significantly.

• Docker has become the de facto standard in the container industry and is supported by the

most significant vendors in the Linux and Windows ecosystems, including Microsoft. In the

future, Docker will be ubiquitous in any datacenter in the cloud or on-premises.

• A Docker container is becoming the standard unit of deployment for any server-based

application or service.

• Docker orchestrators like the ones provided in Azure Kubernetes Service (AKS) and Azure

Service Fabric are fundamental and indispensable for any microservices-based or multi-

container applications that have significant complexity and scalability needs.

• An end-to-end DevOps environment that supports Continuous Integration/Continuous

Deployment (CI/CD) and connects to the production Docker environments can provide agility

and ultimately improve the time to market of your applications.

• Azure DevOps Services greatly simplifies your DevOps environment by deploying to Docker

environments from your CI/CD pipelines. This statement applies to simple Docker

environments as well as to advanced microservice and container orchestrators based on

Azure.

